1031. Maximum Sum of Two Non-Overlapping Subarrays

30 篇文章 0 订阅

Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.)

Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either:

  • 0 <= i < i + L - 1 < j < j + M - 1 < A.lengthor
  • 0 <= j < j + M - 1 < i < i + L - 1 < A.length.

 

Example 1:

Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output: 20
Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.

Example 2:

Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output: 29
Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.

Example 3:

Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output: 31
Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.

 

Note:

  1. L >= 1
  2. M >= 1
  3. L + M <= A.length <= 1000
  4. 0 <= A[i] <= 1000

Discuss

思路:先预先计算一部分,然后再遍历另外一部分

class Solution(object):
    def maxSumTwoNoOverlap(self, A, L, M):
        """
        :type A: List[int]
        :type L: int
        :type M: int
        :rtype: int
        """
        n = len(A)
        
        def get(A):
            left = [0]*len(A)
            running = sum(A[:M])
            left[M-1] = running
            for i in range(M,n):
                running += A[i]
                running -= A[i-M]
                left[i]=max(left[i-1], running) 
            return left
        
        
        left = get(A)
        right = get(A[::-1])[::-1]
        running = sum(A[:L])
        res = running + right[L]
        for i in range(L, n):
            running += A[i]
            running -= A[i-L]
            if i+1<n:
                res = max(res, running+max(left[i-L],right[i+1]))
            else:
                res = max(res, running+left[i-L])
        return res
    

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值