Given an array A
of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L
and M
. (For clarification, the L
-length subarray could occur before or after the M
-length subarray.)
Formally, return the largest V
for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, or0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Note:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
思路:先预先计算一部分,然后再遍历另外一部分
class Solution(object):
def maxSumTwoNoOverlap(self, A, L, M):
"""
:type A: List[int]
:type L: int
:type M: int
:rtype: int
"""
n = len(A)
def get(A):
left = [0]*len(A)
running = sum(A[:M])
left[M-1] = running
for i in range(M,n):
running += A[i]
running -= A[i-M]
left[i]=max(left[i-1], running)
return left
left = get(A)
right = get(A[::-1])[::-1]
running = sum(A[:L])
res = running + right[L]
for i in range(L, n):
running += A[i]
running -= A[i-L]
if i+1<n:
res = max(res, running+max(left[i-L],right[i+1]))
else:
res = max(res, running+left[i-L])
return res