1031. Maximum Sum of Two Non-Overlapping Subarrays**
https://leetcode.com/problems/maximum-sum-of-two-non-overlapping-subarrays/
题目描述
Given an array A
of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L
and M
. (For clarification, the L
-length subarray could occur before or after the M
-length subarray.)
Formally, return the largest V
for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, or0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output: 20
Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output: 29
Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output: 31
Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Note:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
C++ 实现 1
思路来自: [Java/C++/Python] O(N)Time O(1) Space
其实上面都是废话, 思路都在代码里.
注意先对 A[0, ... i]
子序列求和, 然后注意 res, maxL, maxM
的初始化.
class Solution {
public:
int maxSumTwoNoOverlap(vector<int>& A, int L, int M) {
for (int i = 1; i < A.size(); ++ i)
A[i] += A[i - 1]; // A[i] = sum(A[0 ... i])
int res = A[L + M - 1], maxL = A[L - 1], maxM = A[M - 1];
for (int i = L + M; i < A.size(); ++ i) {
maxL = std::max(maxL, A[i - M] - A[i - M - L]);
maxM = std::max(maxM, A[i - L] - A[i - M - L]);
res = std::max(res, std::max(maxL + A[i] - A[i - M], maxM + A[i] - A[i - L]));
}
return res;
}
};
C++ 实现 2
这个 C++ O(N) buy/sell stock 2 times 也非常精彩, 但我发现还是 C++ 实现 1
中的思路更好推广.