遗传算法求解TSP问题

该博客探讨了使用遗传算法解决旅行商问题(TSP)。内容包括问题描述、遗传算法基本原理、求解TSP的步骤,如种群初始化、适应度函数、选择、交叉和变异操作。还提供了MATLAB代码实现,并展示了不同城市数量下的最短路径结果。最后,对比了遗传算法和蚁群算法在TSP问题上的应用。
摘要由CSDN通过智能技术生成

遗传算法求解TSP问题

一、 问题描述

旅行商问题,即TSP问题(TravellingSalesman Problem)又译为类型推销问题、货郎担问题,是数学领域中著名问题之一。

假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。


求解

假设从合肥出发,最后回到合肥

问题域:X={北京,成都,广州,上海}

目标函数:min f(x)=dist(合肥,city1) + ∑dist(cityi,cityj)+ dist(cityj,合肥)

如下图:

 

二、 遗传算法

遗传算法的基本原理是通过作用于染色体上的基因寻找好的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值