线索二叉树

版权声明:本文为博主原创文章,转载请务必附上文章网址,谢谢。 https://blog.csdn.net/zjw_python/article/details/72934430

1.基本概念

对于某些二叉树而言,其指针域的空间不能被充分利用。因此我们可以考虑利用那些空的指针域来存放指向结点在某种遍历次序下的前驱和后继结点的地址。我们把这种指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,对应的二叉树就称为线索二叉树
我们对二叉树以某种次序遍历使其变为线索二叉树的过程称作是线索化。线索化的过程就是在遍历二叉树时修改结点空指针的过程。

2.线索二叉树的存储结构

为区别某一节点的lchild指针是指向它的左孩子还是指向前驱,rchild指针是指向它的右孩子还是后继?我们可以分别设置一个ltag标志和一个rtag标志。当标志变量值为0时,表明此时对应的指针指向结点的孩子,而当标志变量值为1时,表明此时对应的指针指向某次遍历的前驱或后继。

 //线索二叉树的存储结构定义  
typedef int TElemType;         //元素的数据类型根据实际情况而定,这里假设为int

typedef struct Node          //结点结构 
{  
    TElemType      data;      //数据域,用于存储结点数据   
    struct Node  *lchild;     //指针,指向该结点的左孩子或前驱 
    struct Node  *rchild;     //指针,指向该结点的右孩子或后继 
    int        ltag,rtag;     //标志,指示指针指向左右孩子还是前驱后继 
}BiThrNode,*BiThrTree;

3.线索二叉树的建立

在此以中序遍历和先序遍历为例建立线索二叉树

BiThrTree pre=NULL;                //全局变量,始终指向访问的前一个结点
//中序线索化 
void InThreading(BiThrTree p)
{
    if (p)
    {
        InThreading(p->lchild);
        if (!p->lchild)      //如果当前结点的左孩子不存在,则修改当前结点的左标志,并使其左指针指向前一个结点 
        {
            p->ltag=1;
            p->lchild=pre;
        }
        if ((pre!=NULL) && (!pre->rchild))     //如果前一个结点的右孩子不存在,则修改前一个结点的右标志,并使其右指针指向当前结点 
        {
            pre->rtag=1;
            pre->rchild=p;
        }
        pre=p;               //将当前结点定义为前一个结点,为下一轮作准备 
        InThreading(p->rchild);
    }
} 
BiThrTree pre=NULL;                //全局变量,始终指向访问的前一个结点
//先序线索化 
void PreThreading(BiThrTree p)
{
    if (p)
    {
        if(!p->lchild)
        {
            p->ltag=1;
            p->lchild=pre;
        }
        if ((pre!=NULL) && (!pre->rchild))
        {
            pre->rtag=1;
            pre->rchild=p;
        }
        pre=p;
        if (p->ltag!=1)
        PreThreading(p->lchild);
        if (p->rtag!=1)
        PreThreading(p->rchild);
    }
}

4.线索二叉树的遍历

中序遍历:

void InOrderTraverse(BiThrTree T)
{
    BiThrTree p;
    p=T;
    while(p)                //树空或已经到最后一个结点时停止循环 
    {
        while(p->ltag!=1)  //遍历左子树,直到一个没有左孩子的结点 
        {
            p=p->lchild;
        }
        printf("%d",p->data); //打印该结点 
        while(p->rtag==1)  //如果当前结点有后继,则直接访问后继结点 
        {
            p=p->rchild;
            printf("%d",p->data);
        }
        p=p->rchild;     //如果当前结点没有后继时,进入其右子树 
    }
}

先序遍历:

void PreOrderTraverse(BiThrTree T)
{
    BiThrTree p;
    p=T;
    while (p)       //树空或已经到最后一个结点时停止循环 
    {
        printf("%d",p->data);   //打印结点 
        if (p->ltag!=1)   //当前结点的左孩子存在时,下一个结点为左孩子 
        {
            p=p->lchild;
        }else            //若左孩子不存在,则下一个结点为当前结点的右孩子 
        {                //若右孩子也不存在,则下一个结点为当前结点的后继 
            p=p->rchild;
        }
    }
} 

5.代码验证

int main()
{
    BiThrTree T;
    printf("按先序遍历建立线索二叉树:\n");
    CreateBiTree(&T);   //创建树T 
    PreThreading(T);    //先序线索化T 
    printf("\n线索二叉树的先序遍历:\n");
    PreOrderTraverse(T);  //遍历T 
    return 0;
}

这里写图片描述

int main()
{
    BiThrTree T;
    printf("\n按先序遍历建立线索二叉树:\n");
    CreateBiTree(&T);    //创建树T 
    InThreading(T);      //中序线索化T 
    printf("\n线索二叉树的中序遍历:\n");
    InOrderTraverse(T); //遍历T 
    return 0;
}

这里写图片描述

阅读更多

没有更多推荐了,返回首页