题目描述:
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则输出Yes,否则输出No。假设输入的数组的任意两个数字都互不相同。
思路:
BST的后序序列的合法序列是,对于一个序列S,最后一个元素是x (也就是根),如果去掉最后一个元素的序列为T,那么T满足:T可以分成两段,先判断前一段序列的值(左子树)小于x,后一段序列的值(右子树)大于x,再判断这两段(子树)都是合法的后序序列。典型的递归思想。
import java.util.Scanner;
public class VerifySquenceOfBST {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("the size of array:");
int n = scanner.nextInt();
int[] array = new int[n];
System.out.println("input the array:");
for(int i=0;i<n;i++){
array[i] = scanner.nextInt();
}
System.out.println("The array is SquenceOfBST:" + VerifySquenceOfBST(array));
}
public static boolean VerifySquenceOfBST(int[] sequence) {
int len = sequence.length;
if(len == 0){
return false;
}
return isSquenceOfBST(sequence, 0, len - 1);
}
public static boolean isSquenceOfBST(int[] seq, int left, int right){
if(left >= right){
return true;
}
int i = right;
while(i > left && seq[i-1] > seq[right]){
--i;
}
for(int j = i-1;j>=left;j--){
if(seq[j] > seq[right]){
return false;
}
}
return isSquenceOfBST(seq, left, i-1) && isSquenceOfBST(seq, i, right - 1);
}
}