导数极限定理——求分段函数在分段点处的导数(导函数很容易求出或者已知导函数)(打字太慢了,只能写字,字也很丑)

1、公式思路

cc5d93fa10bf490381966b1b32495a7b.jpg

ca9e71ecfe06407b9abd4bfd2272ad32.jpg

0da6e89370184ee9b0d494ff7e71e7a6.jpg

 二、例题(带标准答案)

d9387d9d1c504174bfa1cc7072ccb05f.jpg

分段函数是指定义域被分成若干区间,在不同区间上由不同的表达式给出的函数。对于分段函数在其分界的性质分析,主要关注的是极限、连续性和可导性。 ### 极限 为了确定一个分段函数$f(x)$在某一分界$c$是否有极限,需要检查当$x$趋近于$c$时左右两侧的极限是否相等。即计算$\lim_{{x \to c^-}} f(x)$ 和 $\lim_{{x \to c^+}} f(x)$ 是否存在并且相同。若两者都存在且等于$L$,则可以说$\lim_{{x \to c}} f(x)=L$。 ### 连续性 如果分段函数$f(x)$满足以下条件,则认为它在分界$c$是连续的: - 左侧极限和右侧极限均存在; - 左右极限值相等; - 函数在该定义,并且这个定义值等于左右极限的共同值; 换句话说,要使分段函数在分界$c$连续,必须保证$\lim_{{x \to c^-}} f(x) = \lim_{{x \to c^+}} f(x) = f(c)$。 ### 可导性 分段函数要在分界$c$可导,不仅要在此连续,还要左侧导数和右侧导数也存在并相等。这意味着不仅要验证$\frac{d}{dx}f(x)|_{c^-}$ 和 $\frac{d}{dx}f(x)|_{c^+}$ 存在,而且这两个值还要相等。只有这样才可以说分段函数在$c$可导。 ### 解方法 针对以上三种情况的具体法如下: #### 对于极限的问题, 可以通过直接代入或者利用洛必达法则(适用于不定型的情况)、夹逼定理等方式来解决。 #### 关于连续性的检验, 先分别求出左极限和右极限,再比较它们与$f(c)$的关系即可得出结论。 #### 至于可导性的判断, 首先要确保函数在这个位置是连续的,接着尝试找出左边和右边各自的导数值,看二者是否一致。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值