一、存在
1、函数在x=a处存在:
x=a在函数的定义域中,函数在x=a处有定义,函数在x=a处有图像。
2、极限在x=a处存在:
=A(具体的数)
在x=a的去心邻域有定义(但不一定)
3、导数在
=
处存在:
这个极限
=
=A存在
二、连续(研究在某个点处的连续性)
1、函数在x=a处连续:
图像不断
1、 =A极限存在
2、在x=a处有定义(
存在)
3、=A=
2、函数在x=a处左连续:
x=a这个点处的图像和左边不断
1、 =A极限存在
2、在x=a处有定义(
存在)
3、=A=
2、函数在x=a处右连续:
x=a这个点处的图像和右边不断
1、 =A极限存在
2、在x=a处有定义(
存在)
3、=A=

三、可导(研究在某个点处的可导性)
1、函数在x=a处可导:
=
=A这个极限存在
2、函数在x=a处有左导数:
=
=A这个极限存在
3、函数在x=a处有右导数:
=
=A这个极限存在
【注】在某点处连续或者可导,研究是在某点处,不包括这个点的去心领域哦
下面两条的具体证明方法稍后会补上,属于强化内容
这两条在使用洛必达法则时至关重要的,用来判断洛必达法则使用规则的第二条:要求在x=a的去心邻域可导
1、在某点处连续不一定在它的去心邻域也连续
记得吗连续的定义第一条是:
=A极限存在
【只说极限存在哦,而极限存在的定义是:在x=a的去心邻域有定义。而有定义不代表在去心邻域连续】
2、在某点处可导不一定在它的去心邻域也可导
可导说明 =
=A这个极限存在,极限存在说明去心邻域有定义,去心邻域有定义不代表就可导
可导
=
=A这个极限存在
去心邻域有定义
去心邻域可导
四、混合名词辨析(考验语文水平)
1、 知识点
函数在x=a这个点处可导函数在x=a这个点处连续(可导必连续,但连续不一定可导)
但函数在x=a这个点处连续推不出函数在x=a这个点处可导(绝对值函数连续但在x=a处不可导)
2、判断题(两个要点:看好每句话的主语,推到好关系)
若在x=a处连续
在x=a的邻域有定义 (T)
若在x=a的邻域有定义
在x=a处连续(F)
若 在x=a的处有定义
在x=a处连续 (F)
若 在x=a的处有定义
在x=a处连续 (T)
若 在x=a的处有定义
在x=a处连续 (F)
若 在x=a的处可导
在x=a处连续 (T)
若 在x=a的处可导
在x=a处连续 (T)
若 在x=a的处可导
在x=a处连续 (T)
若 在x=a的处可导
在x=a处连续 (F)
若 在x=a的处可导
在x=a处连续 (T)
同阶可导可推同阶连续
高阶可导可推低阶连续
但是低阶可导不能推高阶连续
若 存在
在x=a处连续 (F)
若 存在
在x=a处连续 (T)
若 存在
在x=a处连续 (T)
在x=a处连续 (T)
五、极限,连续,导数存在性辨析
根据极限的四则运算