数据结构:二叉树的递归实现

一,概念

二叉树就是一颗特殊的树,二叉树每个结点最多有两个孩子结点,即就是左孩子和右孩子。

接下来我们将以此树为例来进行分析!
这里写图片描述

表示

(1)数组表示
当二叉树的大小和形态不发生剧烈变化时,用一组连续的存储单元存储二叉树的数据元素,为反应各结点在二叉树中的位置及相互关系,须适当安排各结点的存储次序。
假若一个子结点的下标为i,那仫它的父节点的下标为:(i-1)/2;
假若一个父结点的下标为i,那仫它的左孩子的下标为:2*i+1,它的右孩子的下标为:2*i+2.
缺点:如果不是满二叉树和完全二叉树则有太多的内存浪费,且插入删除不便.
用数组表示一个树适用于满二叉树和完全二叉树.
(2)链式存储表示
在一棵树中进行插入和删除时,为反应结点层次的变动,可能需要移动许多节点,常用的是二叉链表,每一个结点至少包括数据data,左孩子leftchild和右孩子rightchild。

分类

(1)满二叉树:所有叶子节点在同一层,通俗点说就是每一层都是满的 (2)完全二叉树局:n-1层是满的
图示:
这里写图片描述

二,基本实现

(1)定义一个二叉树节点

template <class T>//定义一个二叉树节点
struct BinaryTreeNode 
{ 
    BinaryTreeNode<T>* _left; 
    BinaryTreeNode<T>* _right; 
    T _data; 
    BinaryTreeNode(const T& x)
        :_left(NULL)
        ,_right(NULL)
        ,_data(x)
    {}
}; 

(2)构造二叉树

BinaryTree()
        :_root(NULL)
    {}
    BinaryTree(T* a,size_t n,const T& invalid)
    {
        size_t index = 0;
        _root = CreateTree(a,n,invalid,index);
    }
    BinaryTree(const BinaryTree<T>& t)

    {
        _root = _Copy(t._root);
    }

    BinaryTree<T>& operator=(const BinaryTree<T> t)
    {
        if(this != %t)
        {
            swap(t._root,_root)
        }
    }

递归调用过程图:
这里写图片描述

(3)前序遍历
先访问根结点,再递归访问左子树,最后访问右子树

void _PrevOrder(Node* root)
    {
        if(root==NULL)
        {
            return;
        }
        cout<<root->_data<<" ";
        _PrevOrder(root->_left);
        _PrevOrder(root->_right);
    }

这里写图片描述

(4)中序遍历
先访问左子树,再访问根结点,最后访问右子树.

void _InOrder(Node* root)
    {
        if(root==NULL)
        {
            return;
        }
        _InOrder(root->_left);
        cout<<root->_data<<" ";
        _InOrder(root->_right);
    }

这里写图片描述

(5)后序遍历
先访问左子树,再访问右子树,最后访问根结点.

void _PosOrder(Node* root)
    {
        if(root==NULL)
        {
            return;
        }
        _PosOrder(root->_left);
        _PosOrder(root->_right);
        cout<<root->_data<<" ";
    }

这里写图片描述

(6)层序遍历(广度优先遍历)
一层层结点依次遍历,在实现层序遍历的时候用到了队列先进先出的性质,将每一层的数据一次进队列,而每次出队列的元素就是层序遍历的当前元素.

void _LevelOrder (Node* root)
    {
        queue<Node*> q;
        if(root!=NULL)
        {
            q.push(root);
            while(!q.empty())
            {
                Node* front = q.front();
                cout<<front->_data<<" ";
                q.pop();
                if(front->_left)
                {
                    q.push(front->_left);
                }
                if(front->_right)
                {
                    q.push(front->_right);
                }

            }
        }
    }

在这里用到了队列,先压入根节点,依据父节点出队列,子节点进队列原则,然后依次访问对头元素求得层序遍历顺序
k
(7)叶子节点个数
叶子节点(即没有左子树也没有右子树),左子树的叶子节点总数+右子树的叶子节点总数.

size_t _LeafSize(Node* root)
    {
        if(root==NULL)
        {
            return 0;
        }
        if(root->_left==NULL&&root->_right==NULL)
        {
            return 1;
        }
        size_t i = _LeafSize(root->_left);
        size_t j = _LeafSize(root->_right);
        return i+j;
    }

(8)第k层节点数

size_t _GetKLevel(Node* root,size_t k)
    {
        if(root == NULL)
        {
            return 0;
        }
        if(k == 1)
        {
            return 1;
        }
        return _GetKLevel(root->_left,k-1)+(root->_right,k-1);
    }

三,完整代码

using namespace std;
template <class T>//定义一个二叉树节点
struct BinaryTreeNode 
{ 
    BinaryTreeNode<T>* _left; 
    BinaryTreeNode<T>* _right; 
    T _data; 
    BinaryTreeNode(const T& x)
        :_left(NULL)
        ,_right(NULL)
        ,_data(x)
    {}
}; 

template <class T>
class BinaryTree 
{ 
    typedef BinaryTreeNode<T> Node; 
public: 
    BinaryTree()
        :_root(NULL)
    {}
    BinaryTree(T* a,size_t n,const T& invalid)
    {
        size_t index = 0;
        _root = CreateTree(a,n,invalid,index);
    }
    BinaryTree(const BinaryTree<T>& t)

    {
        _root = _Copy(t._root);
    }

    BinaryTree<T>& operator=(const BinaryTree<T> t)
    {
        if(this != %t)
        {
            swap(t._root,_root)
        }
    }

    void PrevOrder()//前序遍历
    {
        return _PrevOrder(_root);
    }
    void InOrder()//中序遍历
    {
        return _InOrder(_root);
    }
    void PosOrder()//后续遍历
    {
        return _PosOrder(_root);
    }
    void LevelOrder()//层序遍历
    {
        return _LevelOrder(_root);
    }
    size_t Size()//大小
    {
        return _Size(_root);
    }
    Node* find(const T&x)//查找一个节点
    {
        return _find(_root,x);
    }
    size_t Depth()//求深度
    {
        return _Depth(_root);
    }
    size_t LeafSize()
    {
        return _LeafSize(_root);
    }
    size_t GetKLevel(size_t k)
    {
        return _GetKLevel(_root,k);
    }


protected:
    //成员函数
    Node* _find(Node* root,const T& x)
    {
        if(root==NULL)
        {
            return NULL;
        }
        if(root->_data == x)
        {
            return root;
        }
        Node* ret=_find(root->_left,x);
            if(ret)
            {
                return ret;
            }
            return _find(root->_right,x);
    }
    size_t _LeafSize(Node* root)
    {
        if(root==NULL)
        {
            return 0;
        }
        if(root->_left==NULL&&root->_right==NULL)
        {
            return 1;
        }
        size_t i = _LeafSize(root->_left);
        size_t j = _LeafSize(root->_right);
        return i+j;
    }
    size_t _GetKLevel(Node* root,size_t k)
    {
        if(root == NULL)
        {
            return 0;
        }
        if(k == 1)
        {
            return 1;
        }
        return _GetKLevel(root->_left,k-1)+(root->_right,k-1);
    }
    size_t _Size(Node* root)
    {
        if(root==NULL)
        {
            return 0 ;
        }
        size_t i =_Size(root->_left);
        size_t j =_Size(root->_right);
        return i+j+1;
    }
    void _LevelOrder (Node* root)
    {
        queue<Node*> q;
        if(root!=NULL)
        {
            q.push(root);
            while(!q.empty())
            {
                Node* front = q.front();
                cout<<front->_data<<" ";
                q.pop();
                if(front->_left)
                {
                    q.push(front->_left);
                }
                if(front->_right)
                {
                    q.push(front->_right);
                }

            }
        }
    }
    size_t _Depth(Node* root)
    {
        if(root==NULL)
        {
            return 0;
        }
        else 
        {
            size_t i = _Depth(root->_left);
            size_t j = _Depth(root->_right);
            if(i>j)
            {
                return i+1;
            }
            else
            {
                return j+1;
            }

        }
    }

    //前序遍历
    void _PrevOrder(Node* root)
    {
        if(root==NULL)
        {
            return;
        }
        cout<<root->_data<<" ";
        _PrevOrder(root->_left);
        _PrevOrder(root->_right);
    }
    //中序遍历
    void _InOrder(Node* root)
    {
        if(root==NULL)
        {
            return;
        }
        _InOrder(root->_left);
        cout<<root->_data<<" ";
        _InOrder(root->_right);
    }
    //后序遍历
    void _PosOrder(Node* root)
    {
        if(root==NULL)
        {
            return;
        }
        _PosOrder(root->_left);
        _PosOrder(root->_right);
        cout<<root->_data<<" ";
    }
    Node* _Copy(Node* root)
    {
        if(root==NULL)
        {
            return NULL;
        }
        Node* newroot = new Node(root->_data);
        newroot->_left = _Copy(root->_left);
        newroot->_right = _Copy(root->_right);
        return newroot;
    } 
        //构建二叉树
    Node* CreateTree(T* a,size_t n,const T& invalid,size_t& index)
    {
        Node* root =NULL;
        if(index < n && a[index] != invalid)
        {
            root = new Node(a[index]);
            root ->_left = CreateTree(a,n,invalid,++index);
            root ->_right = CreateTree(a,n,invalid,++index);
        }
        return root;
    }

protected: 
    Node* _root; 
    size_t index;
    size_t invalid;
}; 
int main() 
{ 
int a1[10] = {1, 2, 3, '#', '#', 4, '#' , '#', 5, 6};
BinaryTree<int>t1(a1,sizeof(a1)/sizeof(a1[0]),'#');
//t1.PosOrder();
//cout<<endl;
//cout<<t1.Size()<<" ";
//cout<<t1.LeafSize();
//cout<<t1.GetKLevel(2);
t1.LevelOrder();
//cout<<(t1.find(3));
//cout<<t1.Depth();
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值