CNN
zjxiaolu
当你的实力还不足以撑起你的野心的时候,请继续低头前行,提高你的实力!
展开
-
卷积神经网络
深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功。本人在多年之前也曾接触过神经网络。本系列文章主要记录自己对深度神经网络的一些学习心得。 第二篇,讲讲经典的卷积神经网络。我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考。这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题。 1. 概述转载 2015-04-29 17:30:04 · 622 阅读 · 0 评论 -
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现
自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可以放到博客上面与大家交流。因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢。 本文的论文来自: Notes转载 2015-04-29 17:35:28 · 668 阅读 · 0 评论 -
Deep learning with Theano 官方中文教程(翻译)(四)—— 卷积神经网络(CNN)
供大家相互交流和学习,本人水平有限,若有各种大小错误,还请巨牛大牛小牛微牛们立马拍砖,这样才能共同进步!若引用译文请注明出处http://www.cnblogs.com/charleshuang/。 本文译自:http://deeplearning.net/tutorial/lenet.html 文章中的代码截图不是很清晰,可以去上面的原文网址去查看。 1、动机转载 2015-04-29 17:36:01 · 960 阅读 · 0 评论 -
卷积神经网络CNN
近来在了解深度学习。深度神经网络的一大特点就是含有多隐含层。卷积神经网络(CNN)算是深度神经网的前身了,在手写数字识别上在90年代初就已经达到了商用的程度。本文中将简要介绍CNN,由于相应的博文资料已经很多,也写的很好,本篇最有价值的是参考资料部分。 前向神经网络数字识别 假设我们的图片是28*28像素的,使用最简单的神经网络进行识别,如图1 图1 输入层转载 2015-04-29 17:27:00 · 1023 阅读 · 0 评论 -
Deep Learning论文笔记之(五)CNN卷积神经网络代码理解
自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可以放到博客上面与大家交流。因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢。 本文的代码来自githup的Dee转载 2015-04-29 17:31:28 · 1046 阅读 · 0 评论 -
卷积神经网络
自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处转载 2015-04-29 17:48:24 · 780 阅读 · 0 评论 -
卷积网络训练太慢?Yann LeCun:已解决CIFAR-10,目标 ImageNet
摘要:CIFAR-10竞赛之后,卷积网络之父Yann LeCun接受相关采访。他认为:卷积网络需要大数据和高性能计算机的支持;深层卷积网络的训练时间不是问题,运行时间才是关键。Yann LeCun还分享了他正在做的一些最新研究。 Kaggle近期举办了一场 关于CIFAR-10数据集的竞赛,该数据集包含有6万个32*32的彩色图像,共分为10种类型,由 Alex Krizhevsky转载 2015-04-20 20:24:47 · 3894 阅读 · 0 评论