-
根据线性代数理论,特征值与特征向量只存在于方阵。如下所示为一方阵A:
在matlab输入矩阵:
A = [1 2 4;
4 0 7
9 1 3];
-
查阅matlab help可以知道,利用eig函数可以快速求解矩阵的特征值与特征向量。
格式:[V,D] = eig(A)
说明:其中D为特征值构成的对角阵,每个特征值对应于V矩阵中列向量(也正是其特征向量),如果只有一个返回变量,则得到该矩阵特征值构成的列向量。
-
按上述说明,在matlab输入: [V,D] = eig(A) 即可求出结果。
完整的代码:
clc;clear;
% [V,D] = eig(A)
A = [1 2 4;
4 0 7
9 1 3];
[V,D] = eig(A)
注:需点击运行按钮,如下图所示:
-
运行结果如下所示:
V =
0.4301 0.1243 - 0.2934i 0.1243 + 0.2934i
0.6288 0.7870 0.7870
0.6478 -0.4054 + 0.3388i -0.4054 - 0.3388i
D =
9.9473 0 0
0 -2.9736 + 1.5220i 0
0 0 -2.9736 - 1.5220i
可以看到,该方阵有三个特征值,分别为:9.9473 -2.9736 + 1.5220i -2.9736 - 1.5220i
对应的特征向量为:
(1)
0.4301
0.6288
0.6478
(2)
0.1243 - 0.2934i
0.7870
-0.4054 + 0.3388i
(3)
0.1243 + 0.2934i
0.7870
-0.4054 - 0.3388i
END
matlab如何求矩阵特征值
最新推荐文章于 2024-09-26 11:10:33 发布