poj 2685 GCD快速幂

自闭,因为gcd里面必须用快速幂优化,想不到有这么个推论:

gcd(am-1,an-1) = agcd(m,n)-1

推广:

若 gcd(a,b)=1

gcd(am-bm,an-bn) = agcd(m,n)-bgcd(m,n)

 

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
using namespace std;
ll a,n,m,k;
ll power_mod(ll a,ll b,ll n)
{
	if (b==0) return 1;
	if (b==1) return a%n;
	ll tmp=power_mod(a,b/2,n);
	tmp=(tmp*tmp)%n;
	if (b&1)tmp=tmp*a%n;
	return tmp;
}
ll gcd(ll a,ll b)
{
	return b?gcd(b,a%b):a;
}
int main()
{
	int T;
	scanf("%d",&T);
	while (T--)
	{
		scanf("%lld%lld%lld%lld",&a,&m,&n,&k);
		ll t=gcd(n,m);
		ll ans=(power_mod(a,t,k)-1+k)%k;
		printf("%lld\n",ans);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值