首先 AVL 树是平衡二叉搜索树,所以首先 必须满足搜索树,即l_child值<parent值<=r_child值。这个在前面已经实现了。插入和删除不停的递归就可以。
其次 AVL 树是平衡二叉树,他的平衡条件是左右子树的深度之差小于2.而关键问题在怎么计算深度之差。
一般的方法都是通过平衡度来衡量的。而平衡度怎么得到呢,一般是通过左右子树的深度差得到。其实别人怎么得到平衡度我也没搞明白,不过在这里我是参考了一中思路,就是在每个节点中 包含它自己的高度,而没有直接包含平衡度。
节点的结构:
其实AVL 的算法很简单,AVL算法的示意图和神马的前人都给你画出来了,而实现这些算法,主要就在内存分配上,和指针的处理上。
而这里面 最主要的就是 高度的处理上面。
AVL的基本算法:
怎么让AVL树恢复平衡:
具体代码: