P2404 自然数的拆分问题 深度优先搜索


题目链接

链接: P2404 自然数的拆分问题

题目描述

在这里插入图片描述

解题思路

题目的目标是在给定一个正整数 n 的情况下,找出所有和为 n 的正整数序列(从 1 开始)。具体来说,代码中的dfs函数是一个深度优先搜索(DFS)的实现,用于搜索可能的正整数序列,而主函数则负责接收输入并进行调用。

代码的解题思路及总结如下:

  1. DFS搜索所有可能的和为 n 的正整数序列:代码的关键部分是dfs函数,它通过递归地搜索所有可能的正整数序列,以求得和为 n 的序列。在递归的过程中,当前位置x表示当前从1到x的数的和为n的一种解,参数c表示当前序列的长度。递归的终止条件是当x到达n时,检查当前序列是否满足升序要求,并输出满足条件的序列。

  2. 选择合适的搜索策略:代码中使用DFS算法来搜索所有可能的正整数序列,通过尝试从 1 开始的每个正整数,来构建可能的序列。在搜索的过程中,利用递归来进行深度搜索,尝试所有可能的组合。

  3. 实现并调用DFS函数:在主函数中,首先接收输入的正整数 n,然后调用DFS函数,开始搜索可能的序列。DFS函数通过递归搜索所有可能的序列,找出满足和为 n 的序列,并输出结果。

  4. 复杂度分析:这段代码的时间复杂度是指数级的,因为它需要尝试所有可能的正整数序列,时间复杂度为 O(2^n)。空间复杂度为 O(n),因为需要存储当前搜索的正整数序列。

注意回溯

for(int i=1;i<=n-1;i++)
	{
		if(x+i<=n){
			a[c]=i;
		    dfs(x+i,c+1);
		    a[c]=0;
		}
	}

代码实现

#include<bits/stdc++.h>
using namespace std;
int n;
int a[10];
void dfs(int x,int c)
{
	if(x==n)
	{
		for(int i=1;i<c;i++)
		{
			if(a[i]<a[i-1])
			 return;
		}
		for(int i=0;i<c-1;i++)
		{
			cout<<a[i]<<"+";
		}
		cout<<a[c-1]<<endl;
		return;
	}
	for(int i=1;i<=n-1;i++)
	{
		if(x+i<=n){
			a[c]=i;
		    dfs(x+i,c+1);
		    a[c]=0;
		}
	}
}
int main()
{
	cin>>n;
	dfs(0,0);
	return 0;
}

总结

总的来说,这段代码的思路是通过DFS算法搜索所有可能的和为 n 的正整数序列,找出满足条件的序列并输出。这种深度搜索的思路可以解决这类组合问题,属于dfs基础题目,适合新手练习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值