长格式和宽格式的用法

长格式和宽格式是数据组织的两种不同方式,它们在处理和分析数据时各有优缺点。

宽格式 (Wide Format):每个值有行属性和列属性,对应两个属性

在宽格式数据中,每个主题(例如,每个个体或实验单位)的多个观测值被存储在同一行中,并且每个观测值都有自己的列。例如,一个数据集记录了三个人在不同时间点的体重,宽格式可能如下所示:

Person  | Weight_Time1 | Weight_Time2 | Weight_Time3
--------|--------------|--------------|-------------
Alice   | 60           | 62           | 63
Bob     | 70           | 72           | 74
Charlie | 80           | 81           | 82

在这个例子中,每个人的体重在三个不同时间点被记录在同一行中。

长格式 (Long Format):一行一个观测值,也是对应两个属性

相比之下,在长格式数据中,每一行通常只包含一个观测值。如果使用长格式来表示上述同样的数据,它可能如下所示:

Person  | Time   | Weight
--------|--------|-------
Alice   | Time1  | 60
Alice   | Time2  | 62
Alice   | Time3  | 63
Bob     | Time1  | 70
Bob     | Time2  | 72
Bob     | Time3  | 74
Charlie | Time1  | 80
Charlie | Time2  | 81
Charlie | Time3  | 82

在这个例子中,每一行代表一个人在一个特定时间点的体重。

比较:

  • 长格式通常更适合数据分析和统计建模,因为它使数据更容易被不同的分析工具和函数处理。
  • 宽格式通常更适合展示数据和制作报表,因为它可以直观地显示每个主题的所有观测值。
  • 在进行数据处理和分析时,根据需要,你可能需要在长格式和宽格式之间转换数据。Pandas 的 meltpivot 函数是实现这种转换的常用工具。长格式和宽格式是数据组织的两种不同方式,它们在处理和分析数据时各有优缺点。

宽格式 (Wide Format):

在宽格式数据中,每个主题(例如,每个个体或实验单位)的多个观测值被存储在同一行中,并且每个观测值都有自己的列。例如,一个数据集记录了三个人在不同时间点的体重,宽格式可能如下所示:

Person  | Weight_Time1 | Weight_Time2 | Weight_Time3
--------|--------------|--------------|-------------
Alice   | 60           | 62           | 63
Bob     | 70           | 72           | 74
Charlie | 80           | 81           | 82

在这个例子中,每个人的体重在三个不同时间点被记录在同一行中。

长格式 (Long Format):

相比之下,在长格式数据中,每一行通常只包含一个观测值。如果使用长格式来表示上述同样的数据,它可能如下所示:

Person  | Time   | Weight
--------|--------|-------
Alice   | Time1  | 60
Alice   | Time2  | 62
Alice   | Time3  | 63
Bob     | Time1  | 70
Bob     | Time2  | 72
Bob     | Time3  | 74
Charlie | Time1  | 80
Charlie | Time2  | 81
Charlie | Time3  | 82

在这个例子中,每一行代表一个人在一个特定时间点的体重。

比较:

  • 长格式通常更适合数据分析和统计建模,因为它使数据更容易被不同的分析工具和函数处理。
  • 宽格式通常更适合展示数据和制作报表,因为它可以直观地显示每个主题的所有观测值。
  • 在进行数据处理和分析时,根据需要,你可能需要在长格式和宽格式之间转换数据。Pandas 的 meltpivot 函数是实现这种转换的常用工具。
<think>好的,我现在需要帮助用户解决关于K210 CanMV获取坐标反馈的问题。首先,我得回忆一下K210CanMV的相关知识,尤其是API部分。用户提到他们想获取设备的坐标,可能是指物体检测或人脸识别后的结果。 根据用户提供的引用内容,引用[2]提到了人脸检测案例,在检测到人脸后会在画面上画矩形框并打印信息。这可能涉及到返回的坐标尺寸数据。我需要确认CanMV的API中是否有相关的函数或对象来获取这些信息。 首先,人脸检测通常使用如KPU模块,加载模型后进行检测,返回的结果可能包含物体的坐标大小。例如,在CanMV中,可能使用`kpu.run_yolo2()`或者类似的函数,返回一个列表,每个元素包含物体的x、y、w、h等信息。此外,引用[3]提到了示例程序,可能需要查看示例中的相关代码,比如helloworld.py或其他物体检测的例子,看看他们是如何处理返回值的。 另外,用户提到的坐标可能是指摄像头采集画面中的位置,所以需要考虑图像分辨率坐标系的转换。例如,K210开发板的摄像头分辨率通常是224x224或320x240,检测结果的坐标可能相对于这个分辨率。 然后,我需要确保回答中提到的API函数或方法是否正确,比如`object.x()`、`object.y()`、`object.w()`、`object.h()`,这些是否是CanMV中真实存在的接口。可能需要查阅CanMV的官方文档或示例代码来验证这些方法的存在用法。 最后,还要考虑用户可能的应用场景,比如如何在实际项目中获取并使用这些数据,是否需要调整坐标以适应不同的显示需求。例如,如果要在LCD上显示检测框,可能需要将坐标映射到LCD的分辨率上。同时,要提醒用户注意不同模型可能输出不同的数据格式,需要根据具体模型调整代码。 总结步骤: 1. 确认CanMV中物体检测的API,如使用YOLO或人脸检测模型后的返回值结构。 2. 指出具体的对象属性方法,如x、y、w、h。 3. 提供示例代码片段,展示如何遍历检测结果并提取信息。 4. 提到可能的坐标转换需求,尤其是分辨率不同的情况。 5. 引用相关的示例或文档,如引用[2][3]中的案例,增强回答的可信度。</think>在 CanMV 开发环境中,获取目标坐标及主要通过**物体检测模型返回的结果对象属性**实现。以下是具体方法: --- ### 1. **物体检测结果的数据结构** 使用 KPU 运行 AI 模型(如人脸检测、YOLO 物体检测)时,检测结果通常以 `list` 形式返回,每个元素对应一个检测到的目标对象,包含以下关键属性: - `x()`:目标左上角横坐标(单位:像素) - `y()`:目标左上角纵坐标(单位:像素) - `w()`:目标度(单位:像素) - `h()`:目标高度(单位:像素) --- ### 2. **示例代码** ```python import sensor, image, lcd, time from maix import KPU # 初始化摄像头LCD sensor.reset() lcd.init() # 加载YOLO模型 kpu = KPU() kpu.load("/sd/yolo.kmodel") # 替换为你的模型路径 while True: img = sensor.snapshot() objects = kpu.run_yolo2(img) # 运行检测 if objects: for obj in objects: # 提取坐标 x = obj.x() y = obj.y() width = obj.w() height = obj.h() # 在图像上绘制矩形框 img.draw_rectangle(x, y, width, height, color=(255,0,0)) # 打印信息到串口终端 print(f"坐标: ({x}, {y}), : {width}x{height}") lcd.display(img) time.sleep_ms(10) ``` --- ### 3. **关键API说明** - `kpu.run_yolo2(img)`:运行 YOLO 模型并返回检测结果列表[^2]。 - `obj.x()`/`obj.y()`:返回目标左上角的像素坐标(相对于摄像头图像分辨率)。 - `obj.w()`/`obj.h()`:返回目标的像素高度。 --- ### 4. **注意事项** - **分辨率适配**:摄像头默认分辨率可能为 $320 \times 240$ 或 $224 \times 224$,需与模型输入尺寸匹配。 - **坐标系原点**:坐标原点在图像左上角,横轴向右,纵轴向下。 - **模型差异**:不同模型(如人脸检测、物体检测)返回的数据结构可能略有不同,需参考模型文档[^3]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值