1122. Hamiltonian Cycle (25)

The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".

In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:

n V1 V2 ... Vn

where n is the number of vertices in the list, and Vi's are the vertices on a path.

Output Specification:

For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.

Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO

用个二维数组记录图,哈密顿回路要求经过各点一次,最后回到原点。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 205;
int N, M, K, n;
int graph[maxn][maxn], vis[maxn]; 
int main()
{
    int x, y;
    scanf("%d%d", &N, &M);
    for(int i = 0; i < M; i++){
        scanf("%d%d", &x, &y);
        graph[x][y] = 1;
        graph[y][x] = 1;
    }
    scanf("%d", &K);
    int start, tmp, j;
    for(int i = 0; i < K; i++){
        scanf("%d", &x);
        memset(vis, 0, sizeof(vis));
        for(j = 0; j < x; j++){
            scanf("%d", &y);
            if(j){
                if(graph[tmp][y] == 1 && vis[y] == 0){
                    vis[y] = 1;
                    tmp = y;
                }else
                    break;
            } else { 
                tmp = start = y; 
                vis[start] = 1;
            }
        }
        for(j = j + 1; j < x; j++)
            scanf("%d", &y);
        if(y != start || graph[tmp][y] != 1)
            printf("NO\n");
        else {
            for(x = 1; x <= N; x++){
                if(vis[x] == 0){
                    printf("NO\n");
                    break;
                }
            }
            if(x == N + 1)
                printf("YES\n");
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值