209. Minimum Size Subarray Sum

Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn’t one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

双指针的思路,小于s,++r。大于s,–l。注意边界

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int l, r, Min, sum;
        l = 0;
        r = 1;
        if(nums.empty()) return 0;
        Min = nums.size() + 1;
        sum = nums[l] + nums[r];
        while(1){
            if(nums[r] >= s || nums[l] >= s) return 1;
            else if(sum >= s){ 
                Min = Min > (r - l + 1) ? (r - l + 1) : Min;
                if(l < nums.size()){
                    sum -= nums[l];
                    ++l;
                } 
            } else if(sum < s) {
                if(r < nums.size() - 1)
                    ++r;
                else 
                    break;
                sum += nums[r];
            }
        }
        return Min == nums.size() + 1 ? 0 : Min;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值