问题描述:
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn’t one, return 0 instead.
For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.
分析:一开始理解错了题意,以为是可以排序的,结果是只能在原数组中查找。
那么新开辟一个数组,这个数组存储从第一个数到对应位置数的总和。
然后使用一个快慢指针,从前向后查找,注意,快指针只增不减(因为没有意义)。当res值为1时,返回,因为不可能有比为1更小的值了。时间复杂度为O(n),还可以用二分查找法,不过时间复杂度为O(nlogn)。{满足条件的数组不在左半拉,就在右半拉,或者跨越中间部分}
代码如下:324ms
public class Solution {
public int minSubArrayLen(int s, int[] nums) {
int length = nums.length;
if(length<=0)
return 0;
long[] sums = new long[length];
//init sums;
long prev = 0;
for(int i = 0;i<length;i++){
sums[i] = nums[i] + prev;
prev = sums[i];
}
int slow,fast=0;
int res=Integer.MAX_VALUE;
for(slow=-1;slow<length && fast<length;slow++){
prev= slow<0?0:sums[slow];
while(fast<length){
if(sums[fast]-prev>=s){
if(fast-slow<res)
res = fast-slow;
break;
}
fast++;
}
if(res==1)
return res;
}
return res==Integer.MAX_VALUE?0:res;
}
}