Given an array consists of non-negative integers, your task is to count the number of triplets chosen from the array that can make triangles if we take them as side lengths of a triangle.
Example 1:
Input: [2,2,3,4]
Output: 3
Explanation:
Valid combinations are:
2,3,4 (using the first 2)
2,3,4 (using the second 2)
2,2,3
Note:
The length of the given array won’t exceed 1000.
The integers in the given array are in the range of [0, 1000].
1思路:排个序,然后用暴力的方法
class Solution {
public:
int triangleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
int n = nums.size();
int cnt = 0;
for(int i = 0; i < n - 2; ++i){
for(int j = i + 1; j < n - 1; ++j){
for(int k = j + 1; k < n; ++k){
if(nums[i] + nums[j] > nums[k])
cnt++;
else
break;
}
}
}
return cnt;
}
};
Discuss思路
/** we need to find 3 number, i < j < k, and a[i] + a[j] > a[k];
* if we sort the array, then we can easily use two pointer to find all the pairs we need.
* if at some point a[left] + a[right] > a[i], all the elements from left to right-1 are valid.
* because they are all greater then a[left];
* so we do count += right - left; and right--
*
* otherwise, we increment left till we get a valid pair.
也就是说left, right = i - 1, i,这三个比较,如果nums[left] + nums[right] > nums[i],那么left到right中间的数必然满足三角形。
class Solution {
public:
int triangleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
int n = nums.size();
int cnt = 0;
for(int i = 0; i < n; ++i){
int left = 0, right = i - 1;
while(left < right){
if(nums[left] + nums[right] > nums[i]){
cnt += right - left;
--right;
} else
++left;
}
}
return cnt;
}
};