知识图谱
文章平均质量分 87
zkkkkkkkkkkkkk
https://pypi.tuna.tsinghua.edu.cn/simple
展开
-
基于apache-jena的知识问答
这篇文章主要写如何使用Python对apache-jena进行交互查询。具体三元组数据建立、转换、导入内容请看:知识问答三元组数据准备阶段。本文在知识问答三元组数据准备阶段的基础上,接着往下写。注:本文案例代码使用https://github.com/zhangtao-seu/Jay_KG中的代码定义实体原创 2022-03-28 19:09:40 · 1885 阅读 · 1 评论 -
Python连接neo4j图数据库并写入三元组数据进行可视化展示
前言一、安装eno4j图数据库二、启动neo4j三、Python连接eno4j3.1、安装py2neo 3.2、使用py2neo操作neo4j四、数据入库 4.1、抽取三元组关系4.2、效果展示 4.3、删除图库中所有实体和关系五、合并相同实体前言本文对非结构化文本数据进行解析成三元组,后写入neo4j图库。记录一些操作代码。在实际项目实战肯定是一体化...原创 2022-03-01 16:40:09 · 10489 阅读 · 5 评论 -
使用jieba、pyhanlp工具实现关键字词句的提取
关键字提取 简单来说关键字提取就是从一段文本中将最能体现总体思想的词或句抽取出来。关键字可以帮助我们快速了解文本想要表达的内容,尤其是在很长的文献、作文、专利等篇幅巨大、内容居多的场景中可以发挥出不错的效果。 关键词的提取具有如下方法:TF-IDF、TextRank、jieba、pyhanlp 关于jieba和pyhanlp分词的实现可以看这篇博客:知识图谱 — jieba、pyhanlp、smoothnlp工具实现中文分词(词性表)原创 2022-01-26 14:02:19 · 3598 阅读 · 0 评论 -
搭建一个简单的知识问答系统
声明 本博文是在使用如下开源项目时总结的方法https://github.com/zhangtao-seu/Jay_KG,文中一部分使用了作者 README.md上的原话。目录下载apache-jena和apache-jena-fuseki配置环境变量启动fuseki的web服务数据准备 owl文件owl转换为nt文件 RDF文件转换成tdb文件 fus...原创 2022-01-21 18:15:22 · 2246 阅读 · 11 评论 -
知识图谱 — pyhanlp实现命名体识别(附命名体识别代码)
上篇文章将到了使用jieba、pyhanlp、smoothnlp工具进行文本分词,这篇文章在上篇分词的基础上接着讲解命名体识别,感兴趣请点我进入到上篇文章查看分词工具的使用。本文在最后有本人一些不成熟的命名体识别方法。一、什么是实体? 怎么样,被这么一问是不是不知道如何回答。实体的特性必有确定性,这样就可以把实体理解成一个确定的实例。就比如 “王者荣耀“它其实就是一个确确实实存在的实例,而单单拿 ”王者“或者 ”荣耀“来说,我们不能一下子确定是什么。这就是实体的概念。...原创 2021-12-31 11:50:25 · 2040 阅读 · 2 评论 -
知识图谱 — jieba、pyhanlp、smoothnlp工具实现中文分词(词性表)
最近也是在预研知识图谱相关技术。这里面涉及到了一些关于自然语言处理方面的内容和技术。目前已经调研了一些分词、命名体识别相关技术。今天记录下分词工具的使用。一、什么是知识图谱?笔者理解的知识图谱是一个巨型的语义网络,形同互联网一样。不过语义网络上每个点是一个实体,两两实体之前存在一条边也就是关系或属性。其实也就是找到一个三元组,类似于(实体、关系、实体)或(实体、属性、属性值)的形式。这里面重要的步骤就是如何把形同这样形式的三元组抽取出来,并且还要保证抽取出三元组的正确性。这无疑是...原创 2021-12-30 11:38:08 · 2685 阅读 · 0 评论