看大佬的时时AI抠图项目

本文介绍了RobustVideoMatting项目,一款利用深度学习技术实现实时高精度视频抠图的工具,涉及特征提取、人物背景区分、循环机制与ConvGRU等高级技术。作者探讨了项目背后的原理和应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序言

最近网上看到了一个RobustVideoMatting的项目,感觉比较有意思,就拿来看一下,

时时抠图的DEMO链接:https://peterl1n.github.io/RobustVideoMatting/#/demo

可以先进去体验一下。

论文地址链接:https://arxiv.org/abs/2108.11515

一作作者林山川,二作作者杨林杰,他们发表的这篇文章,在计算机视觉业界是什么水平这个我不清楚,但是对于我这个门外汉来说,我还是觉得蛮厉害的。

项目源码:https://github.com/PeterL1n/RobustVideoMatting

个人看法

就我个人理解,视频流即一张张连续的图片组成,帧频(Frame Rate)越高,画面越流畅。我是一个游戏爱好者,打个比方,原神的帧率为60,即一秒钟60张图片。

而一张彩色图片可以用RGB三原色矩阵描述,那么每张图片都可以使用三个矩阵去描述并提取特征值。

个人认为难点在于:

  1. 提取特征值训练时怎么区分人物和背景。
  2. 如何进行高精度采样。

文中提到循环机制的引入使得AI能够在连续的视频流中自我学习,从而了解到哪些信息需要保留,哪些信息可以遗忘掉。循环解码器采用了多尺度ConvGRU来聚合时间信息。而深度引导滤波(DGF)模块,用于高分辨率上采样。

我这门外汉还是别瞎比比了,大佬的文章膜拜一下就好。

 

参考链接:

完美抠图王冰冰!字节实习生开发的AI,实现4K60帧视频实时抠图,连头发丝都根根分明 - 知乎

### 关于 SDPPP 协议栈层的功能实现解析 #### 1. **SDPPP 的定义与背景** SDPPP 并未在现有引用中被提及,因此需要基于协议栈的一般特性以及上下文中提到的相关技术来推测其可能含义。通常情况下,“SDPPP”可能是某种特定领域内的缩写或自定义术语。如果将其拆解来看,“S”可能代表 Stable Diffusion (SD),而“DPPP”则可能涉及数据处理管道(Data Processing Pipeline Protocol)。这种假设下的功能可以理解为一种用于优化图像生成流程的数据传输与处理机制。 #### 2. **功能描述** 结合 PS-SD 插件的功能特点[^1] 和 ComfyUI 中 LayerDiffusion 节点的能力[^2],可推断 SDPPP 可能具备如下核心能力: - **局部重绘支持** 类似于 PS-SD 插件的操作方式,允许用户针对图片中的某些区域进行精细化调整,而不影响整体效果。这一过程可以通过指定掩码或者透明图层的方式完成。 - **透明图层生成** 借助 ComfyUI 提供的 LayerDiffusion 技术,可以直接利用文本输入生成带有透明背景的图层,从而简化传统抠图操作的需求。 - **多阶段工作流集成** 根据字节大佬整理的 ComfyUI 工作流集合[^3],SDPPP 或许还包含了复杂的 JSON 配置文件管理模块,使得整个创作流程更加灵活可控。例如,在视频生成场景下(Text2Video)[^3],该协议可能会负责协调不同帧之间的过渡平滑度等问题。 #### 3. **具体实现细节** 以下是基于上述分析构建的一个简单 Python 示例代码片段,展示如何模拟部分 SDPPP 层级逻辑: ```python import numpy as np def sdppp_layer_process(input_image, mask_region=None): """ Simulate the processing of an image through a hypothetical SDPPP layer. Args: input_image (np.ndarray): The original image array. mask_region (tuple): Optional tuple defining masked area coordinates. Returns: np.ndarray: Processed output with potential local modifications applied. """ processed_output = input_image.copy() if mask_region is not None and isinstance(mask_region, tuple): x_start, y_start, width, height = mask_region # Apply localized changes within specified bounds for i in range(x_start, min(x_start + width, processed_output.shape[0])): for j in range(y_start, min(y_start + height, processed_output.shape[1])): processed_output[i][j] += np.random.randint(-50, 50) return processed_output ``` 此函数实现了基本的局部修改功能,类似于实际应用中由 SDPPP 执行的任务之一。 --- ### 结论总结 尽管当前缺乏明确文档直接解释 SDPPP 的确切作用范围及其内部结构设计原理,但从关联资料间接得出结论可知它大概率围绕高效便捷地操控 AI 绘画成果展开服务,并且融合了现代图形编辑工具的优势特性如精确控制选定部位再加工等优势^[]^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值