🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。
🚀 探索专栏:学步_技术的首页 —— 持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。
🔍 技术导航:
- 人工智能:深入探讨人工智能领域核心技术。
- 自动驾驶:分享自动驾驶领域核心技术和实战经验。
- 环境配置:分享Linux环境下相关技术领域环境配置所遇到的问题解决经验。
- 图像生成:分享图像生成领域核心技术和实战经验。
- 虚拟现实技术:分享虚拟现实技术领域核心技术和实战经验。
🌈 非常期待在这个数字世界里与您相遇,一起学习、探讨、成长。不要忘了订阅本专栏,让我们的技术之旅不再孤单!
💖💖💖 ✨✨ 欢迎关注和订阅,一起开启技术探索之旅! ✨✨
文章目录
这篇文章分享在做自动驾驶视觉BEV感知算法工程化过程中踩过的坑、思考过的关键技术点,也结合业界主流做法聊聊这个领域的发展和取舍。如果你是一位算法工程师,或者也正苦于BEV算法落地部署的问题,相信这篇内容会对你有帮助。
一、BEV感知:为什么视觉需要“上帝视角”?
在自动驾驶逐渐向L3+推进的过程中,视觉系统面临的最大挑战不再是识别能力,而是如何在复杂感知环境中构建稳定、结构化的场景表示。多摄像头的异视角信息融合往往受限于透视畸变、光照变化和遮挡问题。为此,Bird’s Eye View(BEV)感知应运而生,它提供了一种将所有视觉信息统一映射到俯视图网格的方式。通过这种“上帝视角”,我们可以在几何对齐的空间中分析车道线、障碍物甚至动态目标,从而更自然地与决策模块对接。换句话说,BEV不只是感知方式的转变,它实际上是整个自动驾驶感知系统架构的一次重构。

二、视觉BEV的三段式架构:从提取到理解的闭环
视觉BEV感知系统通常由三个部分组成:前端的图像特征提取模块、中间的视角转换模块,以及后端的感知任务头。前端多采用成熟的CNN或Transformer结构来捕获多尺度图像特征,而后端则是常见的检测、分割或occupancy任务head。中间这层——视角转换模块(View Transformation Module)——则是整套系统的关键所在。它决定了图像特征如何被映射到BEV空间,是
订阅专栏 解锁全文
1123

被折叠的 条评论
为什么被折叠?



