【Spark】sortBy[T]和sortByKey[T]排序详解

问题导读:

1. 排序算子是如何做排序的?
2. 完整的排序流程是?


解决方案:

1 前言

在前面一系列博客中,特别在Shuffle博客系列中,曾描述过在生成ShuffleWrite的文件的时候,对每个partition会先进行排序并spill到文件中,最后合并成ShuffleWrite的文件,也就是每个Partition里的内容已经进行了排序,在最后的action操作的时候需要对每个executor生成的shuffle文件相同的Partition进行合并,完成Action的操作。

排序算子和常见的reduce算子算法有何区别?
常见的一些聚合、reduce算子,不需要排序
  • 将相同的hashcode分配到同一个partition,哪怕是不同的executor
  • 在做最后的合并的时候,只需要合并不同的executor里相同的partition就可以了
  • 对每个partition进行排序,考虑内存因数,解决相同的Partition多文件合并的问题,使用外排序进行相同的key合并


2 排序

下面是一个常见的排序的小例子:


[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
package spark.sort
 
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
 
object sortsample {
   def main(args : Array[String]) {
     
     val conf = new SparkConf().setAppName( "sortsample" )
     val sc = new SparkContext(conf)
     var pairs = sc.parallelize(Array(( "a" , 0 ),( "b" , 0 ),( "c" , 3 ),( "d" , 6 ),( "e" , 0 ),( "f" , 0 ),( "g" , 3 ),( "h" , 6 )), 2 );
     pairs.sortByKey( true , 3 ).collect().foreach(println);
   }
}


核心代码:OrderedRDDFunctions.scala

会很奇怪么?RDD里面并没有sortByKey的方法?在这里和前面博客里提到的PairRDDFunctions一样,隐式转换:


[Scala]  纯文本查看  复制代码
?
1
2
3
4
implicit def rddToOrderedRDDFunctions[K : Ordering : ClassTag, V : ClassTag](rdd : RDD[(K, V)])
   : OrderedRDDFunctions[K, V, (K, V)] = {
   new OrderedRDDFunctions[K, V, (K, V)](rdd)
}


调用的是OrderedRDDFunctions.scala里的方法

[Scala]  纯文本查看  复制代码
?
1
2
3
4
5
6
7
def sortByKey(ascending : Boolean = true , numPartitions : Int = self.partitions.length)
      : RDD[(K, V)] = self.withScope
  {
    val part = new RangePartitioner(numPartitions, self, ascending)
    new ShuffledRDD[K, V, V](self, part)
      .setKeyOrdering( if (ascending) ordering else ordering.reverse)
  }


对Partition采用了范围分配的策略,为何要使用范围分配的策略?
  • 对其它非排序类型的算子,使用散列算法,只要保证相同的key是分配在相同的partition就可以了,并不会影响相同的key的合并,计算。
  • 对排序来说,如果只是保证相同的key在相同的Partition并不足够,最后还是需要合并所有的Partition进行排序合并,如果这发生在Driver端做这件事,将会非常可怕,那么我们可以做一些策略改变,制定一些Range,使排序相近的key分配到同一个Range上,在把Range扩大化,比如:一个Partition管理一个Range



 

2.1 分配Range
Range的分配不合理,会影响数据的不均衡,导致executor在做同Partition排序的时候会不均衡,并行计算的整体性能往往会被单个最糟糕的运行节点所拖累,如果提高运算的速度,需要考虑数据分配的均衡性。

2.1.1 每个区块采样大小
获取所有的key,依据所有的Key制定区间,这显然是不明智的,后果变成一个全量数据的排序。我们可以采用部分采样的策略,基于采样数据进行区间划分,首先我们需要评估一个简单的采样大小的阈值。
Partitioner.scala rangeBounds
代码如下:


[Scala]  纯文本查看  复制代码
?
1
2
3
4
val sampleSize = math.min( 20.0 * partitions, 1 e 6 )
       // Assume the input partitions are roughly balanced and over-sample a little bit.
       val sampleSizePerPartition = math.ceil( 3.0 * sampleSize / rdd.partitions.length).toInt
       val (numItems, sketched) = RangePartitioner.sketch(rdd.map( _ . _ 1 ), sampleSizePerPartition)


partitions: 参数在指定sortByKey的时候设置的区块大小:3

[Scala]  纯文本查看  复制代码
?
1
pairs.sortByKey( true , 3 )


rdd.partitions: 指的是在数据的分区块大小:2

[Scala]  纯文本查看  复制代码
?
1
sc.parallelize(Array(( "a" , 0 ),( "b" , 0 ),( "c" , 3 ),( "d" , 6 ),( "e" , 0 ),( "f" , 0 ),( "g" , 3 ),( "h" , 6 )), 2 )


每个区块需要采样的数量是通过几个固定参数来计算

[Scala]  纯文本查看  复制代码
?
1
val sampleSizePerPartition = math.ceil( 3.0 * sampleSize / rdd.partitions.length).toInt



2.1.2 Sketch采样(蓄水池采样法)

[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
def sketch[K : ClassTag](
     rdd : RDD[K],
     sampleSizePerPartition : Int) : (Long, Array[(Int, Long, Array[K])]) = {
   val shift = rdd.id
   // val classTagK = classTag[K] // to avoid serializing the entire partitioner object
   val sketched = rdd.mapPartitionsWithIndex { (idx, iter) = >
     val seed = byteswap 32 (idx ^ (shift << 16 ))
     val (sample, n) = SamplingUtils.reservoirSampleAndCount(
       iter, sampleSizePerPartition, seed)
     Iterator((idx, n, sample))
   }.collect()
   val numItems = sketched.map( _ . _ 2 ).sum
   (numItems, sketched)
}


mapPartitionsWithIndex, collection 这些都是RDD ,都是需要在提交job进行运算的,也就是采样的过程中,是通过executor执行了一次job

[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
def reservoirSampleAndCount[T : ClassTag](
     input : Iterator[T],
     k : Int,
     seed : Long = Random.nextLong())
   : (Array[T], Long) = {
   val reservoir = new Array[T](k)
   // Put the first k elements in the reservoir.
   var i = 0
   while (i < k && input.hasNext) {
     val item = input.next()
     reservoir(i) = item
     i + = 1
   }
 
   // If we have consumed all the elements, return them. Otherwise do the replacement.
   if (i < k) {
     // If input size < k, trim the array to return only an array of input size.
     val trimReservoir = new Array[T](i)
     System.arraycopy(reservoir, 0 , trimReservoir, 0 , i)
     (trimReservoir, i)
   } else {
     // If input size > k, continue the sampling process.
     var l = i.toLong
     val rand = new XORShiftRandom(seed)
     while (input.hasNext) {
       val item = input.next()
       l + = 1
       // There are k elements in the reservoir, and the l-th element has been
       // consumed. It should be chosen with probability k/l. The expression
       // below is a random long chosen uniformly from [0,l)
       val replacementIndex = (rand.nextDouble() * l).toLong
       if (replacementIndex < k) {
         reservoir(replacementIndex.toInt) = item
       }
     }
     (reservoir, l)
   }
}


函数reservoirSampleAndCount采样
  • 当数据小于要采样的集合的时候,可以使用数据为样本
  • 当数据集合超过需要采样数目的时候会继续遍历整个数据集合,通过随机数进行位置的随机替换,保证采样数据的随机性

返回的结果里包含了总数据集,区块编号,区块的数量,每个区块的采样集


2.1.3 重新采样
为了避免某些区块的数据量过大,设置了一个阈值:


[Scala]  纯文本查看  复制代码
?
1
val fraction = math.min(sampleSize / math.max(numItems, 1 L), 1.0 )


阈值=采样数除于总数据量,当某个区块的数据量*阈值大于每个区的采样率的时候,认为这个区块的采样率是不足的,需要重新采样

[Scala]  纯文本查看  复制代码
?
1
2
3
4
5
val imbalanced = new PartitionPruningRDD(rdd.map( _ . _ 1 ), imbalancedPartitions.contains)
           val seed = byteswap 32 (-rdd.id - 1 )
           val reSampled = imbalanced.sample(withReplacement = false , fraction, seed).collect()
           val weight = ( 1.0 / fraction).toFloat
           candidates ++ = reSampled.map(x = > (x, weight))



2.1.4 采样集key的权重
我们在前面对每个区进行了相同数量的采样(不包含重新采样),但是每个区的数量有可能是不均衡的,为了避免不均衡性需要对每个区采样的key进行权重设置,尽量分配高权重给数据量多的区
权重因子:


[Scala]  纯文本查看  复制代码
?
1
val weight = (n.toDouble / sample.length).toFloat


n 是区的数据数量
sample 是采样的数量
这里权重的最小值是1,因为采样的数量肯定是小于等于数据

当数据量大于采样数量的时候,每个区的采样数量是相同的,那么意味着区的数据量越大,该区块的key的权重也就越大



2.1.5 分配每个区块的range
样本已经采集好了,现在需要对依据样本进行区块的range进行分配
  • 先对样本进行排序
  • 依据每个样本的权重计算每个区块平均所分配的权重
  • 最后通过每个区分配的权重按照顺序来决定获取哪些样本用作range,一个区分配一个样本区间



[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def determineBounds[K : Ordering : ClassTag](
     candidates : ArrayBuffer[(K, Float)],
     partitions : Int) : Array[K] = {
   val ordering = implicitly[Ordering[K]]
   val ordered = candidates.sortBy( _ . _ 1 )
   val numCandidates = ordered.size
   val sumWeights = ordered.map( _ . _ 2 .toDouble).sum
   val step = sumWeights / partitions
   var cumWeight = 0.0
   var target = step
   val bounds = ArrayBuffer.empty[K]
   var i = 0
   var j = 0
   var previousBound = Option.empty[K]
   while ((i < numCandidates) && (j < partitions - 1 )) {
     val (key, weight) = ordered(i)
     cumWeight + = weight
     if (cumWeight > = target) {
       // Skip duplicate values.
       if (previousBound.isEmpty || ordering.gt(key, previousBound.get)) {
         bounds + = key
         target + = step
         j + = 1
         previousBound = Some(key)
       }
     }
     i + = 1
   }
   bounds.toArray
}


2.2 ShuffleWriter
在以前的博客里介绍了SortShuffleWrite,在sortByKey的排序情况下使用了BypassMergeSortShuffleWriter,把焦点聚焦到key如何分配到Partitioner和每个Partition的文件将会如何写入key,value生成Shuffle文件,在这两点上BypassMergeSortShuffleWriter将明显的不同于SortShuffleWrite


[Scala]  纯文本查看  复制代码
?
1
2
3
4
5
while (records.hasNext()) {
       final Product 2 <K, V> record = records.next();
       final K key = record. _ 1 ();
       partitionWriters[partitioner.getPartition(key)].write(key, record. _ 2 ());
     }



2.2.1 分配key到Partition
在函数调用了partitioner.getPartition方法,还是回到RangePartitioner类中


[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def getPartition(key : Any) : Int = {
    val k = key.asInstanceOf[K]
    var partition = 0
    if (rangeBounds.length < = 128 ) {
      // If we have less than 128 partitions naive search
      while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
        partition + = 1
      }
    } else {
      // Determine which binary search method to use only once.
      partition = binarySearch(rangeBounds, k)
      // binarySearch either returns the match location or -[insertion point]-1
      if (partition < 0 ) {
        partition = -partition- 1
      }
      if (partition > rangeBounds.length) {
        partition = rangeBounds.length
      }
    }
    if (ascending) {
      partition
    } else {
      rangeBounds.length - partition
    }
  }


  • 当Partition的分配数小于128的时候,轮训的查找每个Partition
  • 当Partition大于128的时候,使用二分法查找Partition


2.2.2 生成shuffle文件

  • 基于前面对key进行排序的partition的分配,写到对应的partition文件中
  • 合并Partition文件生成index和data文件(shuffle_shuffleid_mapid_0.index)(shuffle_shuffleid_mapid_0.data)因为Partition已经合并了,最后一位reduceID都是为0
 



注意:在这里并没有象SortShuffleWrite 对每个Partition进行排序,Spill 文件,最后合并文件,而是直接写到了Partition文件中。

2.3 Shuffle Read读取Shuffle文件
在BlockStoreShuffleReader的read函数里


[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
dep.keyOrdering match {
     case Some(keyOrd : Ordering[K]) = >
       // Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled,
       // the ExternalSorter won't spill to disk.
       val sorter =
         new ExternalSorter[K, C, C](context, ordering = Some(keyOrd), serializer = dep.serializer)
       sorter.insertAll(aggregatedIter)
       context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)
       context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)
       context.taskMetrics().incPeakExecutionMemory(sorter.peakMemoryUsedBytes)
       CompletionIterator[Product 2 [K, C], Iterator[Product 2 [K, C]]](sorter.iterator, sorter.stop())
     case None = >
       aggregatedIter
   }


ExternalSorter.insertAll函数

[Scala]  纯文本查看  复制代码
?
1
2
3
4
5
6
while (records.hasNext) {
        addElementsRead()
        val kv = records.next()
        buffer.insert(getPartition(kv. _ 1 ), kv. _ 1 , kv. _ 2 .asInstanceOf[C])
        maybeSpillCollection(usingMap = false )
      }


ExternalSorter函数,这个函数在前面的这篇博客里介绍的比较清楚,这里使用了buffer结构体

[Scala]  纯文本查看  复制代码
?
1
2
@ volatile private var map = new PartitionedAppendOnlyMap[K, C]
  @ volatile private var buffer = new PartitionedPairBuffer[K, C]


在reduceByKey的这些算子相同的Key是需要合并的,所以需要使用Map结构处理相同的Key的值的合并问题,而对排序来说,并不需要相同的值合并,使用Array结构就可以了。
注:在Spark上实现Map、Array都使用了数组的结构,并没有用链表结构


 

在上图的PartitionPairBuffer结构中,有以下几点要注意:
插入KV结构的时候,不进行排序,也就是在处理相同的Partition的时候直接读取插入Array
会存在当内存不够Spill到磁盘的情况,关于Spill请具体参考博客链接


2.3.1 排序
当ExternalSorter.insertAll函数完成后,才会构建一个排序的迭代器


[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
def partitionedIterator : Iterator[(Int, Iterator[Product 2 [K, C]])] = {
val collection : WritablePartitionedPairCollection[K, C] = if (usingMap) map else buffer
   val usingMap = aggregator.isDefined
   if (spills.isEmpty) {
     // Special case: if we have only in-memory data, we don't need to merge streams, and perhaps
     // we don't even need to sort by anything other than partition ID
     if (!ordering.isDefined) {
       // The user hasn't requested sorted keys, so only sort by partition ID, not key
       groupByPartition(destructiveIterator(collection.partitionedDestructiveSortedIterator(None)))
     } else {
       // We do need to sort by both partition ID and key
       groupByPartition(destructiveIterator(
         collection.partitionedDestructiveSortedIterator(Some(keyComparator))))
     }
   } else {
     // Merge spilled and in-memory data
     merge(spills, destructiveIterator(
       collection.partitionedDestructiveSortedIterator(comparator)))
   }
}


这里分成两种情况:
还在内存里没有Spill到文件中去,这时候构建一个内存里的PartitionedDestructiveSortedIterator迭代器,在迭代器中已经排序好了PartitionPairBuffer里的内容


[Scala]  纯文本查看  复制代码
?
1
2
3
4
5
6
7
/** Iterate through the data in a given order. For this class this is not really destructive. */
override def partitionedDestructiveSortedIterator(keyComparator : Option[Comparator[K]])
   : Iterator[((Int, K), V)] = {
   val comparator = keyComparator.map(partitionKeyComparator).getOrElse(partitionComparator)
   new Sorter( new KVArraySortDataFormat[(Int, K), AnyRef]).sort(data, 0 , curSize, comparator)
   iterator
}


Spill到文件里的,文件里的已经排好序了,需要对内存里的PartitionPairBuffer进行排序(和前面一种情况相同的处理),最后对文件和内存进行外排序(外排序可参考博客)

2.4 最后的归并
在Driver端Dag-scheduler-event-loop 线程中会处理每个executor返回的结果(刚才Partition排序后的结果)


[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
   private [scheduler] def handleTaskCompletion(event : CompletionEvent) {
....
   case Success = >
         stage.pendingPartitions - = task.partitionId
         task match {
           case rt : ResultTask[ _ , _ ] = >
             // Cast to ResultStage here because it's part of the ResultTask
             // TODO Refactor this out to a function that accepts a ResultStage
             val resultStage = stage.asInstanceOf[ResultStage]
             resultStage.activeJob match {
               case Some(job) = >
                 if (!job.finished(rt.outputId)) {
                   updateAccumulators(event)
                   job.finished(rt.outputId) = true
                   job.numFinished + = 1
                   // If the whole job has finished, remove it
                   if (job.numFinished == job.numPartitions) {
                     markStageAsFinished(resultStage)
                     cleanupStateForJobAndIndependentStages(job)
                     listenerBus.post(
                       SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobSucceeded))
                   }
 
                   // taskSucceeded runs some user code that might throw an exception. Make sure
                   // we are resilient against that.
                   try {
                     job.listener.taskSucceeded(rt.outputId, event.result)
                   } catch {
                     case e : Exception = >
                       // TODO: Perhaps we want to mark the resultStage as failed?
                       job.listener.jobFailed( new SparkDriverExecutionException(e))
                   }
                 }
}



通过方法taskSucceeded的方法进行不同的Partition的合并

[Scala]  纯文本查看  复制代码
?
1
job.listener.taskSucceeded(rt.outputId, event.result)


[Scala]  纯文本查看  复制代码
?
1
2
3
4
5
6
7
8
9
override def taskSucceeded(index : Int, result : Any) : Unit = {
   // resultHandler call must be synchronized in case resultHandler itself is not thread safe.
   synchronized {
     resultHandler(index, result.asInstanceOf[T])
   }
   if (finishedTasks.incrementAndGet() == totalTasks) {
     jobPromise.success(())
   }
}


实际上是调用了resultHandler方法,我们来看看resultHandler是怎样定义的

[Scala]  纯文本查看  复制代码
?
1
2
3
4
5
6
7
8
def runJob[T, U : ClassTag](
     rdd : RDD[T],
     func : (TaskContext, Iterator[T]) = > U,
     partitions : Seq[Int]) : Array[U] = {
   val results = new Array[U](partitions.size)
   runJob[T, U](rdd, func, partitions, (index, res) = > results(index) = res)
   results
}


在runJob的方法里

[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
def runJob[T, U : ClassTag](
     rdd : RDD[T],
     func : (TaskContext, Iterator[T]) = > U,
     partitions : Seq[Int],
     resultHandler : (Int, U) = > Unit) : Unit = {
   if (stopped.get()) {
     throw new IllegalStateException( "SparkContext has been shutdown" )
   }
   val callSite = getCallSite
   val cleanedFunc = clean(func)
   logInfo( "Starting job: " + callSite.shortForm)
   if (conf.getBoolean( "spark.logLineage" , false )) {
     logInfo( "RDD's recursive dependencies:\n" + rdd.toDebugString)
   }
   dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
   progressBar.foreach( _ .finishAll())
   rdd.doCheckpoint()
}


就是:

[Scala]  纯文本查看  复制代码
?
1
(index, res) = > results(index) = res)


构建了一个数组result,将每个Partition的数值保存到result的数组里
result[0]=partition[0] =array(tuple<k,v>,tuple<k,v>.....)

什么时候对所有的Partition最后合并呢?
来看RDD的collect算子


[Scala]  纯文本查看  复制代码
?
1
2
3
4
def collect() : Array[T] = withScope {
   val results = sc.runJob( this , (iter : Iterator[T]) = > iter.toArray)
   Array.concat(results : _ *)
}


runJob返回的是result的数组,每个Partition是管理不同的范围,最后的合并只要简单的将不同的Partition合并就可以了



3. 排序完整的流程

  • Driver 提交一个采样任务,需要Executor对每个Partition进行数据采样,数据采样是一次全数据的扫描
  • Driver 获取采样数据,每个Partition的数据量,依据数据量的权重,进行Range的分配
  • Driver 开始进行排序,先提交ShuffleMapTask ,Executor对分配到自己的数据基于Range进行Partition的分配,直接写入Shuffle文件中
  • Driver 提交ResultTask,Executor读取Shuffle文件中相同的Partition进行合并(相同的key不做值的合并)、排序
  • Driver 接收到ResultTask的值后,最后进行不同的Partition数据合并




转自:csdn
作者:raintungli


转载自:http://www.aboutyun.com/thread-22069-1-1.html
您好!如果您想使用`sortBy`函数按照时间排序,可以按照以下步骤操作: 1. 首先,将数据加载到一个RDD中。 2. 然后,使用`map`函数将时间字符串转换为时间戳,并以元组的形式返回时间戳和原始数据。 3. 最后,使用`sortBy`函数按照时间戳排序,并使用`map`函数将排序后的数据转换回原始数据格式。例如,以下是一份示例代码: ``` val rdd = sc.parallelize(Seq( ("2019-07-17 06:51:44", "data1"), ("2020-08-01 12:30:00", "data2"), ("2021-01-08 18:15:30", "data3") )) val sortedRDD = rdd .map{ case (timeString, data) => (java.sql.Timestamp.valueOf(timeString).getTime, (timeString, data)) } .sortByKey() .map{ case (timestamp, (timeString, data)) => (timeString, data) } sortedRDD.foreach(println) ``` 在上面的代码中,我们首先使用`parallelize`函数将数据加载到一个RDD中。然后,使用`map`函数将时间字符串转换为时间戳,并以元组的形式返回时间戳和原始数据。注意,我们使用`java.sql.Timestamp.valueOf`函数将时间字符串转换为`Timestamp`类型,并使用`getTime`函数获取时间戳。最后,使用`sortByKey`函数按照时间戳排序,并使用`map`函数将排序后的数据转换回原始数据格式。 请注意,上述代码中使用的是Scala API。如果您使用的是Java API,则可以使用`java.time.LocalDateTime.parse`函数将时间字符串转换为`LocalDateTime`类型,并使用`java.time.LocalDateTime.toEpochSecond`函数将其转换为时间戳。另外,如果您的数据量较大,建议使用`sortByKey`函数的变体`sortByKey(numPartitions: Int)`来进行分区排序,以提高性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值