1定义
二次规划是指,带有二次型目标函数和约束条件的最优化问题。
二次规划的一般形式可以表示为,如下图1式子。
公式 1
其中G是Hessian矩阵,τ是有限指标集,c,x和{ai},都是R中的向量。
如果Hessian矩阵是半正定的,则我们说式 1是一个凸二次规划,存在全局最优解;
如果Hessian矩阵是正定的,则存在全局唯一最优解;
如果Hessian矩阵是非正定的,则为非凸二次规划,存在多个平稳点和局部极小值点。
2 小知识
2.1 正定矩阵
设A是n阶实对称矩阵, 如果对任意一非零实向量X,都使二次型
f(X)=XTMX>0,
则称f(X)为正定二次型,矩阵A称为正定矩阵(Positive Definite)。
2.2 Hessian矩阵
suppose f :
Rn
→ ℝ is a function taking as input a vector x ∈
Rn
and outputting a scalar f(x) ∈ ℝ; if all second partial derivatives of f exist and are continuous over the domain of the function, then the Hessian matrix H of f is a square n×n matrix, usually defined and arranged as follows:
or, component-wise:
简单记忆:Hessian矩阵就是二阶偏导数构成的对称矩阵。