【算法】辗转相除求最大公约数gcd

求最大公约数的最常用的算法是欧几里得算法,也称为辗转相除法。问题定义为求i和j的最大公约数gcd(i,j),其中i和j是整数,不妨设i>j。
算法可以递归的表示:
1. 如果j能整除i,那么gcd(i,j)=j;

2. j不能整除i,令r=i%j,那么gcd(i,j)=gcd(j,r)。


时间复杂度为log2(n),不过证明好像挺麻烦的,对于我这种数学渣渣,,,更是如此。。。

下面证明转载自:http://blog.sina.com.cn/s/blog_647d97b10100lf7k.html

注:如有侵权联系我删除

我们先不考虑模运算本身的时间复杂度(算术运算的时间复杂度在Knuth的TAOCP中有详细的讨论), 我们只考虑这样的问题: 欧几里得算法在最坏情况下所需的模运算次数和输入的a和b的大小有怎样的关系?
我们不妨设a>b>=1(若a<b我们只需多做一次模运算, 若b=0或a=b模运算的次数分别为0和1), 构造数列{u n}: u 0=a, u 1=b, u k=u k-2 mod u k-1(k>=2), 显然, 若算法需要n次模运算, 则有u n=gcd(a, b), u n+1=0. 我们比较数列{u n}和菲波那契数列{F n}, F 0=1<=u n, F 1=1<=u n-1, 又因为由u k mod u k+1=u k+2, 可得u k>=u k+1+u k+2, 由数学归纳法容易得到u k>=F n-k, 于是得到a=u 0>=F n, b=u 0>=F n-1. 也就是说如果欧几里得算法需要做n次模运算, 则b必定不小于F n-1. 换句话说, 若 b<F n-1, 则算法所需模运算的次数必定小于n. 根据菲波那契数列的性质, 有F n-1>(1.618) n/sqrt(5), 即b>(1.618) n/sqrt(5), 所以模运算的次数为O(logb).


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值