MapReduce 框架原理
InputFormat 数据输入
数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。
一个Job的Map阶段并行度由客户端在提交Job时的切片数决定
每一个Split切片分配一个MapTask并行实例处理
默认情况下,切片大小=BlockSize
切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
1.1 Job提交流程详解
-
建立连接
创建提交 Job 的代理 判断是本地运行环境还是 yarn 集群运行环境
-
提交 job
创建给集群提交数据的 Stag 路径 获取 jobid ,并创建 Job 路径 拷贝 jar 包到集群 计算切片,生成切片规划文件 向 Stag 路径写 XML 配置文件 提交 Job,返回提交状态