MapReduce InputFormat 数据输入

本文详细介绍了MapReduce框架中InputFormat的数据输入过程,包括Job提交流程、FileInputFormat的切片解析,以及TextInputFormat和CombineTextInputFormat的使用。重点讨论了数据切片的逻辑,如切片大小计算、TextInputFormat的默认行为,以及CombineTextInputFormat如何解决小文件过多的问题。通过调整虚拟存储切片最大值,可以优化处理效率。
摘要由CSDN通过智能技术生成

MapReduce 框架原理

在这里插入图片描述

InputFormat 数据输入

数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。

一个Job的Map阶段并行度由客户端在提交Job时的切片数决定
每一个Split切片分配一个MapTask并行实例处理
默认情况下,切片大小=BlockSize
切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

1.1 Job提交流程详解

  1. 建立连接

     创建提交 Job 的代理
     判断是本地运行环境还是 yarn 集群运行环境
    
  2. 提交 job

     创建给集群提交数据的 Stag 路径
     获取 jobid ,并创建 Job 路径
     拷贝 jar 包到集群
     计算切片,生成切片规划文件
     向 Stag 路径写 XML 配置文件
     提交 Job,返回提交状态
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值