2021-03-16学习小记

  1. torch.nn.Identity() 建立一个输入模块, 什么都不做
    m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
    input = torch.randn(128, 20)
    output = m(input)
    print(output.size())
    #torch.size([128, 20])

  2. einops 教程
    基础:https://github.com/arogozhnikov/einops/blob/master/docs/1-einops-basics.ipynb
    深度学习:https://github.com/arogozhnikov/einops/blob/master/docs/2-einops-for-deep-learning.ipynb
    pytorch:https://www.cnpython.com/pypi/einops

  3. torch.chunk(tensor, num_chunk, dim)
    将tensor分为num_chunk块,按照dim分。如果最后不够分,最后一块的纬度就会少。
    例如:

a = torch.randn(5,3)
for i, data_i in enumerate(a.chunk(5, 1)):
          print(i, data_i)
>>> a
(tensor([[0.1836],
        [0.1468],
        [0.2362]]), tensor([[0.3686],
        [0.7808],
        [0.4343]]), tensor([[0.8790],
        [0.8243],
        [0.2159]]), tensor([[0.5858],
        [0.0488],
        [0.1859]]), tensor([[0.6702],
        [0.6231],
        [0.9795]]))
  1. nn.Parameter() 与一般tensor的区别:
    nn.Parameter()中的元素会默认自动更新,即requires_grad默认为true
    nn.Parameter会自动被认为是module的可训练参数,即加入到parameter()这个迭代器中去;而module中非nn.Parameter()的普通tensor是不在parameter中的。

  2. 效率太低了,淦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值