CUDA编程 基础与实践 学习笔记(一)

本文是CUDA编程的学习笔记,介绍了GPU与CPU的区别,强调CUDA编程在Nvidia GPU上的应用。内容涵盖异构计算、计算能力概念、GPU架构、CUDA工具及API,并讨论了GPU模式(TCC与WDDM)及其影响。笔记中提出了关于计算能力和GPU显存超出时程序运行的疑问。
摘要由CSDN通过智能技术生成

开个坑…
用pytorch太不灵活了,学习一下CUDA编程。
研究生都第二年了,坚持不下去就有点丢人了奥。
书名见标题,樊哲勇老师的著作,清华大学出版社出版。
重点看前面十二章。
初次阅读,如有理解错误恳请大家批评指正~mua

第一章
GPU(graphics processing unit),显卡。与CPU的区别:CPU有更多晶体管,用于数据缓存和流程控制,只有少数几个逻辑计算单元,适合完成复杂的逻辑计算;GPU有数千个核心,适合大规模矩阵运算。
在这里插入图片描述
(GPU的DRAM和CPU的DRAM是通过PCIe总线来通信的~,所以两者在程序中是否能够直接访问对方的存储空间呢?)
异构计算指CPU+GPU两种不同设备的协作计算,CPU为host,GPU为device。书中使用的GPU均为Nvidia GPU,CUDA编程目前仅支持该公司的GPU。有以下几个系列:
在这里插入图片描述
雀食,实验室的GPU都是Tesla,自己打游戏的主机是GeForce的。
计算能力表达为X.Y的形式:
在这里插入图片描述
前者为主

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值