剑指offer_ 合并两个排序的链表

本文介绍了一种使用递归方法合并两个链表的算法,通过比较两个链表节点的数值大小,将它们按递增顺序合并成一个新的链表。此算法适用于需要对链表进行排序或合并操作的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 采用递归的方法,依次遍历比较两个链表的数值的大小,并存入按递增的顺序存入新的链表,代码如下:

/*
struct ListNode {
	int val;
	struct ListNode *next;
	ListNode(int x) :
			val(x), next(NULL) {
	}
};*/
class Solution {
public:
    ListNode* Merge(ListNode* pHead1, ListNode* pHead2)
    {
        if(pHead1==NULL)
        {
            return pHead2;
        }
        if(pHead2==NULL)
        {
            return pHead1;
        }
        ListNode* NewList=new ListNode(0);
        if(pHead1->val<=pHead2->val)
        {
            NewList=pHead1;
            NewList->next=Merge(pHead1->next,pHead2);
        }
        else
        {
            NewList=pHead2;
            NewList->next=Merge(pHead1,pHead2->next);
        }
       
        return NewList;
        
        
    }
};

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值