公开20190417远古博客,汗
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2859
求最大对称子矩阵
思路:一开始想着对从整体左下角开始枚举点作为子图左下角,但是这种方法需要枚举对称子矩阵的大小然后以点(i,j)为左下角的子矩阵从边长为x转移到边长为x+1的情况,这不暴力了吗,而且还是枚举答案的暴力,没有点与点之间没有状态转移以 i形成O(n*n)的总复杂度,这里n*n为判断标准是因为dp数组是dp[ n ][ n ],n*n是dp的范围鸭
改:
看了题解,因为时间到了,枚举从左上或者右上角开始,枚举子图的左下角,这样可以(i,j)由相邻的点这里是(i-1,j+1)的情况结合新加的两边匹配情况,更新dp[ i ][ j ]即可其实最初的方法改成枚举子图的右上角就可以转移了,这个很好理解,但是陷入了之前的怪圈就不好想到。就像如果一直想着顺推转移dp就很难想到简单就可以解决的逆推转移dp,所以要
A. 在明确不可行时换转移方向试试。
B. 总结逆推和顺推各自特点,多做多思考就好总结了,捕捉判断方向是的关键思路。
#include<bits/stdc++.h>
using namespace std;
char a[1005][1005];
int dp[1005][1005];
int main()
{
int n;
while(~scanf("%d",&n) && n)
{
for (int i = 1;i<=n;i++)
scanf("%s",a[i]+1);
int maxx= 0;
for (int i = 1;i<=n;i++)
{
for (int j = 1;j<=n;j++)
{
dp[i][j] = 1;
int k;
for (k = 1;max(j,n+1-i)+k<=n;k++)
if(a[i-k][j] != a[i][j+k])
break;
dp[i][j] = min(k,dp[i-1][j+1]+1);
maxx = max(maxx,dp[i][j]);
}
}
cout<<maxx<<endl;
}
}