B. Alyona and a treehttps://codeforces.com/problemset/problem/739/B题意:
给你一个有边权有点权的树,问你对于每一个点:有多少当前点子树上的子点满足子点的点权大于等于子点到当前点的距离
结果输出所有的点的值;
思路:
正常做法对每个点讨论,对每个点所有子树的上的点都计算一遍他到当前根的距离,然后。。当前这样复杂度是N2的,题目最多NlogN,想着如何优化:发现如果退化成一条链的话,一个点能被算很多次,(比如链上的最后一个点,光他一个点就能被算n次,大量重复计算一个点不如想能否只对每个点算log次,也就是能否转化为贡献)发现一个点的权值是固定的,所以一个点的覆盖范围是固定的,那一个点的贡献也就是他的父亲到他最远能覆盖的点这个区间,艾玛这个能做:暴力优化成倍增不就行了吗,树上区间操作优化成树上差分不就行了,所以这题就做完了;当前倍增的过程也可以用二分来做【故也有标题树上二分+差分】
code:
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+15;
typedef long long ll;
int head[N],cnt,n;
struct edge
{
int to,w,nxt;
}e[N<<2];
void add(int u,int v,int w){
e[++cnt].to=v;
e[cnt].w=w;
e[cnt].nxt=head[u];
head[u]=cnt;
}
int a[N];ll dis[N];
int fa[N][26];
void dfs1(int u){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
fa[v][0]=u;
dis[v]+=dis[u]+e[i].w;
dfs1(v);
}
}
void st(){
for(int j=1;j<=25;j++)
for(int i=1;i<=n;i++){
fa[i][j]=fa[fa[i][j-1]][j-1];
}
}
int sm[N];
void dfs2(int u){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
int now=v;
for(int j=20;j>=0;j--){
if(fa[now][j]&&(dis[v]-dis[fa[now][j]])<=a[v])
now=fa[now][j];
}
sm[fa[v][0]]++;
sm[fa[now][0]]--;
dfs2(v);
sm[u]+=sm[v];
}
}
int main(){
cin>>n;//memset(jl,0x3f,sizeof(jl));
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=2;i<=n;i++){
int p,w;cin>>p>>w;
add(p,i,w);
}
dfs1(1);
st();
// for(int i=1;i<=n;i++)
// cout<<jl[i][2]<<" ";
// cout<<'\n';
dfs2(1);
for(int i=1;i<=n;i++)
cout<<sm[i]<<" ";
cout<<'\n';
}
/*
2 10
3 9
4 3
5 2
6 5
7 3
8 6
9 8
10 1
*/