image caption笔记(十):一些实现过程中的小细节

1、beam search 一方面可以提升指标,另一方面也可以解决生成的句子不通顺的问题。因此,不管是在训练测试的过程中都要开beamsearch ,对提高指标有帮助。还有就是,如果训练的时候 beam size设置为1,而只是在测试的时候使用beamsearch,原本好的模型可能会变得还不如原本差的模型。也就是,beam size=1下的好的模型 到了beam size=5下未必还能继续好。
2、交叉熵训练的过程中开 scheduled_sample 解决一次预测错 后面全部预测错的问题(exposure bias)。强化学习(比如CIDER引导优化)目的在于(1)解决exposure bias问题 (2)训练目标和评价指标的不一致  但是在强化学习训练的时候,仍然要开 scheduled_sample ,因为对提升指标会有帮助。
3、RL加beam search训练的模型只比RL加greedy decoding训练的模型有少量的提升(但是消耗时间)
(待续)

BERT 模型是一个预训练的自然语言处理模型,它的主要作用是为各种 NLP 任务提供高效的基础语言理解能力。而 Image Captioning 任务则是将一张图片转化为自然语言描述的过程。 为了实现 BERT 模型的 Image Captioning 任务,可以采用以下步骤: 1. 预处理图片数据:将图片进行预处理,如调整大小、裁剪、归一化等操作,以便于模型能够处理。 2. 提取特征向量:使用预训练的卷积神经网络(如 ResNet、VGG)对图片进行特征提取,得到一个固定长度的特征向量。 3. 序列标注:将图片的特征向量作为输入,使用 BERT 模型进行序列标注,输出一段自然语言描述。 4. 模型训练:使用大量的带标注数据对模型进行训练,以优化模型的参数,提高模型预测的准确性和泛化性能。 具体实现细节如下: 1. 预处理图片数据:可以使用 OpenCV、Pillow 等库对图片进行处理,如调整大小、裁剪、归一化等。 2. 提取特征向量:可以使用预训练的卷积神经网络(如 ResNet、VGG)对图片进行特征提取,得到一个固定长度的特征向量。可以使用 PyTorch、TensorFlow 等深度学习框架实现。 3. 序列标注:可以使用 Huggingface Transformers 等库实现 BERT 模型的序列标注功能,输入特征向量作为模型输入,输出自然语言描述。 4. 模型训练:可以使用带标注的图片和对应的自然语言描述数据对模型进行训练,以优化模型的参数,提高模型预测的准确性和泛化性能。可以使用 PyTorch、TensorFlow 等深度学习框架实现。 需要注意的是,在实现过程需要对数据进行处理和清洗,选择合适的模型结构和超参数,以及合理的训练策略,才能得到准确性和泛化性能都比较优秀的 Image Captioning 模型。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>