python编程
月半rai
这个作者很懒,什么都没留下…
展开
-
利用python进行数据分析(一):ipython
在命令行输入ipython即可进入。 (1)在变量的前面或者后面加问号就可以把它的相关信息显示出来。比如 a=1 a?加两个问号可以显示出源代码。 (2)%run xxx.py 可以跑任何py文件(注是在ipython中) (3)执行原创 2017-11-21 21:52:00 · 314 阅读 · 0 评论 -
python学习笔记(九):super
在类的继承中,如果重定义某个方法,该方法会覆盖父类的同名方法,但有时,我们希望能同时实现父类的功能,这时,我们就需要调用父类的方法了,可通过使用 super 来实现,比如:class Animal(object): def __init__(self, name): self.name = name def greet(self): pr...原创 2018-12-14 11:26:37 · 180 阅读 · 0 评论 -
python学习(三):格式化输出‘’.format的用法
print('{}/{}'.format('a', 'b'))原创 2018-05-29 13:24:46 · 2171 阅读 · 0 评论 -
python学习(七):args的Namespace转化为字典
opt=vars(args)原创 2018-11-18 16:24:11 · 3960 阅读 · 0 评论 -
python学习(六):python中赋值、浅拷贝、深拷贝的区别
存在赋值、浅拷贝、深拷贝问题的数据类型是对组合对象来说,所谓的组合对象就是包含了其它对象的对象,如列表,类实例。其他的单个对象则不存在这个问题。可变对象: list, dict.不可变对象有: int, string, float, tuple. 直接赋值:其实就是对象的引用(别名)。 浅拷贝(copy):拷贝父对象,不会拷贝对象的内部的子对象。 深拷贝...原创 2018-11-16 16:24:39 · 209 阅读 · 0 评论 -
python学习(五):Python类中super()和__init__()的关系
1.单继承时super()和__init__()实现的功能是类似的class Base(object): def __init__(self): print 'Base create' class childA(Base): def __init__(self): print 'creat A ', Base.__init_...原创 2018-11-14 21:56:58 · 2090 阅读 · 0 评论 -
python学习(四):python变量和函数
python用下划线作为变量前缀和后缀指定特殊变量_xxx 不能用’from module import *’导入__xxx__ 系统定义名字__xxx 类中的私有变量名核心风格:避免用下划线作为变量名的开始。 因为下划线对解释器有特殊的意义,而且是内建标识符所使用的符号,我们建议程序员避免用下划线作为变量名的开始。一般来讲,变量名_xxx被看作是“私有 的”,在模块或类外...原创 2018-11-14 20:41:18 · 262 阅读 · 0 评论 -
python 学习(二):多重字典以numpy形式存储和读出
如下所示是一个 二重字典a={'d2': {0: array([[ 0.00871335, -0.00310053, 0.00816491, ..., 0.00694641, 0.00464299, 0.01580841], [ 0.00882073, -0.00029377, -0.00521681, ..., 0.0017954 , ...原创 2018-04-19 19:18:19 · 10057 阅读 · 1 评论 -
python学习(一):argparse模块
argparse模块的作用是用于解析命令行参数。例如:python parseTest.py --user 'we'二、使用步骤:import argparseparser = argparse.ArgumentParser()parser.add_argument('--input')args=parser.parse_args()x=args.input...原创 2018-03-03 21:13:56 · 220 阅读 · 0 评论 -
利用python进行数据分析(二):Numpy数组
使用前 import numpy as np Numpy的重要特点是ndarray数组,里面存储的必须是同一种对象。 data.dtype 可以查看数组data里面元素的类型。 data.shape 可以查看数组data的大小。 (1)数组的创建 np.array(列表) 直接将列表转换为数组。 np.zeros(n) np.ones(n) 可以直接生原创 2017-11-22 16:26:16 · 808 阅读 · 0 评论 -
利用python进行数据分析(八):时间序列
时间的数据分为三种: 时间戳,即特定的时刻 固定日期 时间间隔首先from datetime import datetimefrom datetime import timedeltafrom dateutil.parser import parse(1)日期和时间数据类型datetime.now() #可以通过now属性来调取年月日delta=datetime(2011,1,7)-d原创 2017-11-23 22:50:23 · 362 阅读 · 0 评论 -
利用python进行数据分析(七):数据聚合与分组运算
groupby技术:frame data1 data2 key1 key20 0.175093 -0.298958 a one1 -1.582721 -1.418324 a two2 1.656209 -0.629433 b one3 -1.008196 1.722077 b two4 0.54原创 2017-11-23 22:26:50 · 325 阅读 · 0 评论 -
利用python进行数据分析(六):绘图和可视化
首先import matplotlib.pyplot as pltimport numpy as np(1)Figureplt.figure() #创建新的Figure。#不能使用空Figure画图,必须使用add_subplot创建一个或者多个subplotax=fig.add_subplot(2,2,1) #图像一共2×2个,当前选中的是第一个。ax2=fig.add_subp原创 2017-11-23 22:03:00 · 730 阅读 · 0 评论 -
利用python进行数据分析(五):数据规整化
首先import pandas as pd(1)连接pandas对象pd.concat([s1,s2,s3]) #s1,s2,s3是pandas对象,默认axis=0pd.concat([s1,s2,s3],axis=1) #生成DataFramepd.concat([s1,s2,s3],axis=1,keys=['one','two','three']) #添加列名df1.combin原创 2017-11-23 17:47:57 · 338 阅读 · 0 评论 -
利用python进行数据分析(三):pandas--处理数据的工具
在使用之前,首先from pandas import Series,DataFrameimport pandas as pdpandas对象包括 Series,DataFrame两种 (1) Series的创建: 1)只输入一个列表,自动创建索引。a=[1,2,3,4,5]In [3]:Series(a)Out[3]:0 11 22 33 44 5原创 2017-11-23 15:08:54 · 570 阅读 · 0 评论 -
利用python进行数据分析(四):数据加载、存储
首先 import pandas as pd pandas提供了一些将表格型数据读为DataFrame对象的函数。(1)读入本地文件为pandas对象pd.read_csv() #默认分隔符是逗号pd.read_table() #默认分隔符是\tpd.read_table(sep=',') #指定分隔符不需要指定数据类型。(2)保存p原创 2017-11-23 15:54:19 · 315 阅读 · 0 评论 -
python学习(八):函数参数以及 *args 和 **kwargs
首先是最常见的必选参数def test_defargs(one, two): # 参数one没有默认值,two的默认值为2 print('Required argument: ', one) print('Optional argument: ', two)每次我们都要输入两个值,分别赋值给one two。这种参数叫做必选参数。必选参数在前,默认参数在后。...原创 2018-12-12 12:06:28 · 337 阅读 · 0 评论