[BZOJ2460][BeiJing2011]元素
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
3
1 10
2 20
3 30
Sample Output
50
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。
线性基模板题~(喂今天才知道有这么个东西的你有资格这么说么)
话说毕竟是第一次写线性基,就总结一下这是个什么玩意儿吧。
定义:
线性基是一个给定集合的子集
A
={
线性基中所有数互相异或所形成的集合等价于原给定子集中所有数互相异或形成的集合。
也就是说,线性基相当于对给定集合进行了压缩。
性质:(摘自大牛博客)
1.线性基的异或集合中不存在0。
2.线性基的异或集合中每个元素的异或方案唯一,其实这个跟性质1是等价的。
3.线性基二进制最高位互不相同。
4.如果线性基是满的,它的异或集合为[1,2n−1]。
5.线性基中元素互相异或,异或集合不变。
这题唯一要用的插入操作:
插入一个数
x
时,从高到低对于
失败的含义是线性基已经可以表示它在生成异或集合时所起的作用了。
思路:
先把所有矿石按膜法魔法值排序,从大到小插入线性基,若成功则把当前矿石的膜法魔法值加入答案。
然后就没有然后了~所以说是裸题啦~
#include<iostream>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=63,M=10233;
struct Linear_Basis
{
ll d[N];
bool insert(ll x)
{
for(int i=N;i>=0;--i)
if(x&(1ll<<i))
{
if(!d[i])
{
d[i]=x;
return 1;
}
x^=d[i];
}
return 0;
}
}koishi;
struct node
{
ll id,m;
bool operator <(node b)const
{
return m>b.m;
}
}a[M];
inline ll read()
{
ll x=0;
char ch=getchar();
while(ch<'0' || '9'<ch)ch=getchar();
while('0'<=ch && ch<='9')
{
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x;
}
int main()
{
int n;ll ans=0;
n=(int)read();
for(int i=1;i<=n;i++)
a[i].id=read(),a[i].m=read();
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)
if(koishi.insert(a[i].id))
ans+=a[i].m;
printf("%lld\n",ans);
return 0;
}