遥远的国度
Description
zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度。当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcwwzdjn完成任务后才能进入遥远的国度继续追杀。
问题是这样的:遥远的国度有n个城市,这些城市之间由一些路连接且这些城市构成了一颗树。这个国度有一个首都,我们可以把这个首都看做整棵树的根,但遥远的国度比较奇怪,首都是随时有可能变为另外一个城市的。遥远的国度的每个城市有一个防御值,有些时候RapiD会使得某两个城市之间的路径上的所有城市的防御值都变为某个值。RapiD想知道在某个时候,如果把首都看做整棵树的根的话,那么以某个城市为根的子树的所有城市的防御值最小是多少。由于RapiD无法解决这个问题,所以他拦住了zcwwzdjn希望他能帮忙。但zcwwzdjn还要追杀sb的zhx,所以这个重大的问题就被转交到了你的手上。
Input
第1行两个整数n m,代表城市个数和操作数。
第2行至第n行,每行两个整数 u v,代表城市u和城市v之间有一条路。
第n+1行,有n个整数,代表所有点的初始防御值。
第n+2行一个整数 id,代表初始的首都为id。
第n+3行至第n+m+2行,首先有一个整数opt,如果opt=1,接下来有一个整数id,代表把首都修改为id;如果opt=2,接下来有三个整数p1 p2 v,代表将p1 p2路径上的所有城市的防御值修改为v;如果opt=3,接下来有一个整数 id,代表询问以城市id为根的子树中的最小防御值。
Output
对于每个opt=3的操作,输出一行代表对应子树的最小点权值。
Sample Input
3 7
1 2
1 3
1 2 3
1
3 1
2 1 1 6
3 1
2 2 2 5
3 1
2 3 3 4
3 1
Sample Output
1
2
3
4
提示
对于20%的数据,n<=1000 m<=1000。
对于另外10%的数据,n<=100000,m<=100000,保证修改为单点修改。
对于另外10%的数据,n<=100000,m<=100000,保证树为一条链。
对于另外10%的数据,n<=100000,m<=100000,没有修改首都的操作。
对于100%的数据,n<=100000,m<=100000,0<所有权值<=2^31。
震惊!zz选手做大水题4RE的真相竟然是……
竟然是zz选手忘记特判导致出现查询区间l>r的情况……
(╯‵□′)╯︵┻━┻
思路:
题目叫咱换根。
但是,怎么能题目叫你干什么就干什么呢??
所以显然咱不打算换。
那么,如果抛开换根问题,这就是一个很裸的树链剖分+线段树了。
有了换根怎么办?
显然这对修改操作无丝毫影响。
那么对于询问操作,考虑分类讨论:
如果当前根节点就是询问节点,查询对象为整棵树。
如果当前根节点与询问节点的LCA不是询问节点,那么这对询问节点的子树毫无影响,直接查询。
否则枚举询问节点的每个儿子,计算这个儿子与根的LCA是否为这个儿子本身,如果是,则在换根的情况下,这个儿子将会是询问节点的父亲,那么查询排除掉这个儿子的子树的剩余部分即可~
至于怎么查询最后一种情况,既然都树链剖分了,那么显然已经获得了了dfs序,1~儿子初始dfs序-1 和 儿子结束dfs序+1~n 这两个区间即为要查询的对象。
注意儿子初始dfs序为1和儿子结束dfs序为n的情况。
(4RE的罪恶根源……)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define yo puts("yo")
#define yoo puts("yoo")
#define yooo puts("yooo")
inline int read()
{
int x=0;char ch=getchar();
while(ch<'0' || '9'<ch)ch=getchar();
while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
return x;
}
const int N=100009;
int n,m;
int to[N<<1],nxt[N<<1],beg[N],tot;
int fa[N],top[N],siz[N],son[N],ed[N],dep[N];
int val[N],id[N],seg[N],t[N<<2],tag[N<<2],dfn;
int root;
inline void adde(int u,int v)
{
to[++tot]=v;
nxt[tot]=beg[u];
beg[u]=tot;
}
inline void add(int u,int v)
{
adde(u,v);
adde(v,u);
}
inline void dfs(int u)
{
siz[u]=1;
son[u]=0;
for(int i=beg[u],v;i;i=nxt[i])
if((v=to[i])!=fa[u])
{
fa[v]=u;
dep[v]=dep[u]+1;
dfs(v);
siz[u]+=siz[v];
if(!son[u] || siz[son[u]]<siz[v])
son[u]=v;
}
}
inline void dfs2(int u)
{
seg[++dfn]=u;
id[u]=dfn;
if(son[u])
{
top[son[u]]=top[u];
dfs2(son[u]);
for(int i=beg[u],v;i;i=nxt[i])
if((v=to[i])!=fa[u] && v!=son[u])
dfs2(top[v]=v);
}
ed[u]=dfn;
}
inline void upd(int x)
{
t[x]=min(t[x<<1],t[x<<1|1]);
}
inline void push(int x)
{
if(tag[x])
{
tag[x<<1]=tag[x<<1|1]=tag[x];
t[x<<1]=t[x<<1|1]=tag[x];
tag[x]=0;
}
}
inline void biu(int x,int l,int r)
{
if(l==r)
{
t[x]=val[seg[l]];
return;
}
int mid=l+r>>1;
biu(x<<1,l,mid);
biu(x<<1|1,mid+1,r);
upd(x);
}
inline void modify(int x,int l,int r,int dl,int dr,int val)
{
if(dl==l && r==dr)
{
t[x]=val;
tag[x]=val;
return;
}
push(x);
int mid=l+r>>1;
if(dr<=mid)
modify(x<<1,l,mid,dl,dr,val);
else if(mid<dl)
modify(x<<1|1,mid+1,r,dl,dr,val);
else
{
modify(x<<1,l,mid,dl,mid,val);
modify(x<<1|1,mid+1,r,mid+1,dr,val);
}
upd(x);
}
inline int query(int x,int l,int r,int dl,int dr)
{
if(dl==l && dr==r)
return t[x];
push(x);
int mid=l+r>>1;
if(dr<=mid)
return query(x<<1,l,mid,dl,dr);
if(mid<dl)
return query(x<<1|1,mid+1,r,dl,dr);
return min(query(x<<1,l,mid,dl,mid),query(x<<1|1,mid+1,r,mid+1,dr));
}
inline void change(int a,int b,int v)
{
while(top[a]!=top[b])
{
if(dep[top[a]]<dep[top[b]])
swap(a,b);
modify(1,1,dfn,id[top[a]],id[a],v);
a=fa[top[a]];
}
if(dep[a]<dep[b])
modify(1,1,dfn,id[a],id[b],v);
else
modify(1,1,dfn,id[b],id[a],v);
}
inline int lca(int a,int b)
{
while(top[a]!=top[b])
{
if(dep[top[a]]<dep[top[b]])
swap(a,b);
a=fa[top[a]];
}
if(dep[a]<dep[b])
return a;
return b;
}
inline int ask(int a)
{
if(a==root)
return query(1,1,dfn,1,dfn);
else if(lca(a,root)!=a)
return query(1,1,dfn,id[a],ed[a]);
else
{
for(int i=beg[a],v;i;i=nxt[i])
if((v=to[i])!=fa[a] && lca(v,root)==v)
{
int ret=2147483647;
if(id[v]!=1)
ret=min(ret,query(1,1,dfn,1,id[v]-1));
if(ed[v]!=dfn)
ret=min(ret,query(1,1,dfn,ed[v]+1,dfn));
return ret;
}
}
}
int main()
{
n=read();
m=read();
for(int i=1;i<n;i++)
add(read(),read());
for(int i=1;i<=n;i++)
val[i]=read();
root=read();
fa[1]=1;
top[1]=1;
dep[1]=1;
dfs(1);
dfs2(1);
biu(1,1,dfn);
for(int i=1,opt,a,b,c;i<=m;i++)
{
opt=read();
if(opt==1)
root=read();
else if(opt==2)
{
a=read();
b=read();
c=read();
change(a,b,c);
}
else
printf("%d\n",ask(read()));
}
return 0;
}