[BZOJ3064][Tyvj1518]CPU监控-线段树

CPU监控

Description

Bob需要一个程序来监视CPU使用率。这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事。
Bob会干很多事,除了跑暴力程序看视频之外,还会做出去玩玩和用鼠标乱点之类的事,甚至会一脚踢掉电源……这些事有的会让做这件事的这段时间内CPU使用率增加或减少一个值;有的事还会直接让CPU使用率变为一个值。
当然Bob会询问:在之前给出的事件影响下,CPU在某段时间内,使用率最高是多少。有时候Bob还会好奇地询问,在某段时间内CPU曾经的最高使用率是多少。
为了使计算精确,使用率不用百分比而用一个整数表示。
不保证Bob的事件列表出了莫名的问题,使得使用率为负………………

Input

第一行一个正整数T,表示Bob需要监视CPU的总时间。
然后第二行给出T个数表示在你的监视程序执行之前,Bob干的事让CPU在这段时间内每个时刻的使用率达已经达到了多少。
第三行给出一个数E,表示Bob需要做的事和询问的总数。
接下来E行每行表示给出一个询问或者列出一条事件:
Q X Y:询问从X到Y这段时间内CPU最高使用率
A X Y:询问从X到Y这段时间内之前列出的事件使CPU达到过的最高使用率
P X Y Z:列出一个事件这个事件使得从X到Y这段时间内CPU使用率增加Z
C X Y Z:列出一个事件这个事件使得从X到Y这段时间内CPU使用率变为Z
时间的单位为秒,使用率没有单位。
X和Y均为正整数(X<=Y),Z为一个整数。
从X到Y这段时间包含第X秒和第Y秒。
保证必要运算在有符号32位整数以内。

Output

对于每个询问,输出一行一个整数回答。

Sample Input

10
-62 -83 -9 -70 79 -78 -31 40 -18 -5
20
A 2 7
A 4 4
Q 4 4
P 2 2 -74
P 7 9 -71
P 7 10 -8
A 10 10
A 5 9
C 1 8 10
Q 6 6
Q 8 10
A 1 7
P 9 9 96
A 5 5
P 8 10 -53
P 6 6 5
A 10 10
A 4 4
Q 1 5
P 4 9 -69

Sample Output

79
-70
-70
-5
79
10
10
79
79
-5
10
10

HINT

数据分布如下:
第1、2个数据保证T和E均小于等于1000
第3、4个数据保证只有Q类询问
第5、6个数据保证只有C类事件
第7、8个数据保证只有P类事件
全部数据保证T和E均小于等于100000


看PPT看到的,特别坑的线段树……
第一次写,结果忘记先看看正确的姿势,调到意识模糊…..


思路:
首先,需要兹瓷区间加,区间赋值,区间询问最大值。
显然需要维护最大值。
然后添加两个tag,区间加tag和区间赋值tag。

然后,需要兹瓷历史最大值查询。
于是再加一个数组维护区间历史最大值。

发现如果某个节点在区间加tag很大,而突然一个区间赋值把这个区间加tag清空了,那么在下传标记时,这个区间的子区间的历史最大值便无法被这个区间加tag的贡献更新到。

考虑补救措施,发现唯一有用的是这个区间加tag最大的时候,那么再记录一个tag表示当前区间上一次下传标记之后,区间加tag达到过的最大值。
每一次下传标记,这个tag被用于与子节点的区间最大值一起更新历史最大值。

然后考虑在进行了区间赋值后。
由于咱们知道区间赋值后这个区间内的值相等,那么一旦这个区间有了区间赋值tag,所有的区间加操作均可视为直接增加区间赋值tag的值。
那么维护一个历史区间赋值最大值tag,用来表示如果当前区间上一次被下传标记,且被区间赋值后,区间赋值tag所达到过的最大值。

可以发现,在维护了历史区间赋值最大值tag后,以后的区间赋值和区间加均可直接修改这个tag达成,而不是再次新建更多的tag。

于是大功告成!

附代码中tag作用:

t:当前区间最大值
tmx:区间历史最大值
tadd:当前区间加标记
tset:当前区间赋值标记
tmad:区间历史加标记
tmst:区间历史赋值标记
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

#define mid ((l+r)>>1)
const int N=100009;
const int Inf=1e9;

inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0' || '9'<ch){if(ch=='-')f=-1;ch=getchar();}
    while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
    return x*f;
}

inline int maxx(int a,int b){if(a>b)return a;return b;}
inline void chkmax(int &a,int b){if(a<b)a=b;}

int n,q,t[N<<2],tmx[N<<2];
int tset[N<<2],tadd[N<<2];
int tmst[N<<2],tmad[N<<2];

inline void update(int x)
{
    t[x]=maxx(t[x<<1],t[x<<1|1]);
    tmx[x]=maxx(tmx[x<<1],tmx[x<<1|1]);
}

inline void add(int x,int v)
{
    t[x]+=v;
    tadd[x]+=v;
    tmad[x]+=v;
    chkmax(tmx[x],t[x]);
}

inline void set(int x,int v)
{
    tmst[x]=tset[x]=t[x]=v;
    chkmax(tmx[x],t[x]);
}

inline void push(int xx)
{
    for(int i=0;i<=1;i++)
    {
        int x=xx<<1|i;
        chkmax(tmx[x],maxx(tmst[xx],t[x]+tmad[xx]));
        if(tset[x]==-Inf)
            chkmax(tmad[x],tadd[x]+tmad[xx]);
        else
            chkmax(tmst[x],tset[x]+tmad[xx]);
        if(tadd[xx])
        {
            if(tset[x]!=-Inf)
                tset[x]+=tadd[xx];
            else
                tadd[x]+=tadd[xx];
            t[x]+=tadd[xx];
        }
        if(tset[xx]!=-Inf)
        {
            t[x]=tset[x]=tset[xx];
            tadd[x]=0;
        }
        chkmax(tmst[x],maxx(tset[x],tmst[xx]));
        chkmax(tmad[x],tadd[x]);
    }
    tadd[xx]=tmad[xx]=0;
    tset[xx]=tmst[xx]=-Inf;
}

inline void modify(int x,int l,int r,int dl,int dr,int v,void (*f)(int,int))
{
    if(l!=r)push(x);
    if(dl==l && r==dr)
    {
        (*f)(x,v);
        return;
    }
    if(dr<=mid)
        modify(x<<1,l,mid,dl,dr,v,f);
    else if(mid<dl)
        modify(x<<1|1,mid+1,r,dl,dr,v,f);
    else
    {
        modify(x<<1,l,mid,dl,mid,v,f);
        modify(x<<1|1,mid+1,r,mid+1,dr,v,f);
    }
    update(x);
}

inline int qmax(int x,int l,int r,int dl,int dr,int *tt)
{
    if(dl==l && r==dr)
        return tt[x];
    push(x);
    if(dr<=mid)
        return qmax(x<<1,l,mid,dl,dr,tt);
    if(mid<dl)
        return qmax(x<<1|1,mid+1,r,dl,dr,tt);
    return maxx(qmax(x<<1,l,mid,dl,mid,tt),qmax(x<<1|1,mid+1,r,mid+1,dr,tt));
}

inline void build(int x,int l,int r)
{
    tset[x]=tmst[x]=-Inf;
    if(l==r)
    {
        t[x]=tmx[x]=read();
        return;
    }
    build(x<<1,l,mid);
    build(x<<1|1,mid+1,r);
    update(x);
}

int main()
{
    n=read();
    build(1,1,n);

    char s[10];
    q=read();
    while(q--)
    {
        scanf("%s",s+1);
        if(s[1]=='Q' || s[1]=='A')
        {
            int l=read(),r=read();
            printf("%d\n",qmax(1,1,n,l,r,s[1]=='Q'?t:tmx));
        }
        else if(s[1]=='P' || s[1]=='C')
        {
            int l=read(),r=read(),v=read();
            modify(1,1,n,l,r,v,s[1]=='P'?add:set);
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值