R] 【教程】教你如何读懂线性回归lm的结果summary(判断显著性)[转]
> lm.sol <- lm(Y ~ . ,data=a);summary(lm.sol)
Call:
lm(formula = Y ~ ., data = a)
Residuals:
Min 1Q Median 3Q Max
-28.349 -11.383 -2.659 12.095 48.807
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.65007 18.05442 2.418 0.02984 *
X1 1.78534 0.53977 3.308 0.00518 **
X2 -0.08329 0.42037 -0.198 0.84579
X3 0.16102 0.11158 1.443 0.17098
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 19.97 on 14 degrees of freedom
Multiple R-squared: 0.5493, Adjusted R-squared: 0.4527
F-statistic: 5.688 on 3 and 14 DF, p-value: 0.009227
上面的例子源于薛毅书的6.2习题,下面,我们一一解读summary的内容:
直接看到Coefficients这一部分,依次四个值是:
Estimate Std. Error t value Pr(>|t|)
估值,标准误差,T值,P值
其中,我们可以直接通过P值与我们预设的0.05进行比较,来判定对应的解释变量的显著性(我们检验的原假设是,该系数是否显著为0,P<0.05则拒绝原假设,即对应的变量显著不为0),我们可以看到截距项Intercept和X1都可以认为是在P为0.05的水平下显著不为0,通过显著性检验
下面,我们看Multiple R-squared和Adjusted R-squared这两个值,其实我们常称之为“拟合优度”和“修正的拟合优度”,是指回归方程对样本的拟合程度几何,这里我们可以看到,修正的拟合优度=0.4527,也就是大概拟合程度不到五成,表示拟合程度很一般。这个值当然是越高越好,当然,提升拟合优度的方法很多,当达到某个程度,我们也就认为差不多了。具体还有很复杂的判定内容,有兴趣的可以看看: http://baike.baidu.com/view/657906.htm
最后,我们看F-statistic,也就是我们常说的F统计量,也成为F检验,常常用于判断方程整体的显著性检验,其P值为0.009227,显然是<0.05的,我们可以认为方程在P=0.05的水平上还是通过显著性检验的。
这样,我们可以稍微这样总结一下:
T检验是检验解释变量的显著性的;
R-squared是查看方程拟合程度的;
F检验是检验方程整体显著性的;
如果是一元线性回归方程,T检验的值和F检验的检验效果是一样的,对应的值也是相同的,大概就是这样吧。
Call:
lm(formula = Y ~ ., data = a)
Residuals:
Min 1Q Median 3Q Max
-28.349 -11.383 -2.659 12.095 48.807
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.65007 18.05442 2.418 0.02984 *
X1 1.78534 0.53977 3.308 0.00518 **
X2 -0.08329 0.42037 -0.198 0.84579
X3 0.16102 0.11158 1.443 0.17098
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 19.97 on 14 degrees of freedom
Multiple R-squared: 0.5493, Adjusted R-squared: 0.4527
F-statistic: 5.688 on 3 and 14 DF, p-value: 0.009227
上面的例子源于薛毅书的6.2习题,下面,我们一一解读summary的内容:
直接看到Coefficients这一部分,依次四个值是:
Estimate Std. Error t value Pr(>|t|)
估值,标准误差,T值,P值
其中,我们可以直接通过P值与我们预设的0.05进行比较,来判定对应的解释变量的显著性(我们检验的原假设是,该系数是否显著为0,P<0.05则拒绝原假设,即对应的变量显著不为0),我们可以看到截距项Intercept和X1都可以认为是在P为0.05的水平下显著不为0,通过显著性检验
下面,我们看Multiple R-squared和Adjusted R-squared这两个值,其实我们常称之为“拟合优度”和“修正的拟合优度”,是指回归方程对样本的拟合程度几何,这里我们可以看到,修正的拟合优度=0.4527,也就是大概拟合程度不到五成,表示拟合程度很一般。这个值当然是越高越好,当然,提升拟合优度的方法很多,当达到某个程度,我们也就认为差不多了。具体还有很复杂的判定内容,有兴趣的可以看看: http://baike.baidu.com/view/657906.htm
最后,我们看F-statistic,也就是我们常说的F统计量,也成为F检验,常常用于判断方程整体的显著性检验,其P值为0.009227,显然是<0.05的,我们可以认为方程在P=0.05的水平上还是通过显著性检验的。
这样,我们可以稍微这样总结一下:
T检验是检验解释变量的显著性的;
R-squared是查看方程拟合程度的;
F检验是检验方程整体显著性的;
如果是一元线性回归方程,T检验的值和F检验的检验效果是一样的,对应的值也是相同的,大概就是这样吧。