大学生录取预测——逻辑回归

Dataset

每年高中生和大学生都会申请进入到各种各样的高校中去。每个学生都有一组唯一的考试分数,成绩和背景数据。录取委员会根据这个数据决定是否接受这些申请者。在这种情况下一个二元分类算法可用于接受或拒绝申请,逻辑回归是个不错的方法。

  • 数据集admissions.csv包含了1000个申请者的信息,特征如下:

gre - Graduate Record Exam(研究生入学考试), a generalized test for prospective graduate students(一个通用的测试未来的研究生), continuous between 200 and 800.
gpa - Cumulative grade point average(累积平均绩点), continuous between 0.0 and 4.0.
admit - Binary variable, 0 or 1, where 1 means the applicant was admitted to the program.

Use Linear Regression To Predict Admission

  • 这是原本的数据,admit的值是0或者1。可以发现”gpa”和”admit”并没有线性关系,因为”admit”只取两个值。
import pandas
import matplotlib.pyplot as plt
admissions = pandas.read_csv("admissions.csv")
plt.scatter(admissions["gpa"], admissions["admit"])
plt.show()

这里写图片描述

  • 这是通过线性回归模型预测的admit的值,发现admit_prediction 取值范围较大,有负值,不是我们想要的。
# The admissions DataFrame is in memory

# Import linear regression class
from sklearn.linear_model import LinearRegression

# Initialize a linear regression model
model = LinearRegression()

# Fit model
model.fit(admissions[['gre', 'gpa']], admissions["admit"])

# Prediction of admission
admit_prediction = model.predict(admissions
  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
本次逻辑回归实战练习我们将使用一个经典的数据集——“学生录取数据集”。 该数据集包含三个特征变量:考试1成绩、考试2成绩、录取结果(0表示未被录取,1表示被录取)。 我们的目标是构建一个逻辑回归模型,根据学生的两次考试成绩预测学生是否会被录取。 步骤1:导入必要的库和数据集 我们需要导入以下库: - pandas:用于数据加载和处理 - numpy:用于矩阵计算 - matplotlib:用于绘制数据可视化图表 - sklearn:用于构建逻辑回归模型和评估模型性能 ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report ``` 接着,我们加载数据集: ``` data = pd.read_csv('https://raw.githubusercontent.com/cryad/Logistic_Regression/master/exam_scores.csv') ``` 步骤2:数据探索和可视化 我们将使用pandas和matplotlib库对数据集进行探索和可视化,以便更好地理解数据和评估建模可行性。 首先,我们可以使用head()方法查看数据集中的前几行: ``` data.head() ``` 输出结果: ``` exam1 score exam2 score admitted 0 34.623660 78.024693 0 1 30.286711 43.894998 0 2 35.847409 72.902198 0 3 60.182599 86.308552 1 4 79.032736 75.344376 1 ``` 接着,我们绘制一个散点图,将考试1成绩和考试2成绩作为横纵坐标,录取结果用颜色进行区分: ``` plt.scatter(data['exam1 score'], data['exam2 score'], c=data['admitted']) plt.xlabel('Exam 1 Score') plt.ylabel('Exam 2 Score') plt.show() ``` 输出结果: ![img](https://cdn.jsdelivr.net/gh/cryad/Logistic_Regression/images/exam_scores.png) 可以看到,蓝色点表示未被录取的学生,而绿色点表示被录取的学生。我们可以发现,在考试1和考试2成绩都高于一定水平的情况下,学生被录取的概率较大,这也与我们的人生经验相符。 步骤3:数据预处理 在建模之前,我们需要将数据集分为训练集和测试集,并将特征变量和目标变量分开,并进行一些必要的数据处理。 我们将使用train_test_split()方法将数据集分为70%的训练集和30%的测试集: ``` X_train, X_test, y_train, y_test = train_test_split(data[['exam1 score', 'exam2 score']], data['admitted'], test_size=0.3, random_state=42) ``` 接着,我们需要对特征变量进行标准化处理,以确保每个特征变量的重要性对模型一样,避免因为某个特征值过大而导致模型过于关注这个特征变量。我们可以使用sklearn的StandardScaler()方法对数据进行标准化处理: ``` from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) ``` 步骤4:建立并训练模型 有了标准化的特征变量和目标变量,我们可以开始建立逻辑回归模型了。 在scikit-learn中,建立逻辑回归模型非常简单,只需要在构造函数中指定参数即可: ``` model = LogisticRegression() ``` 接着,我们使用fit()方法训练模型: ``` model.fit(X_train_scaled, y_train) ``` 步骤5:模型评估和预测 模型训练完成后,我们需要对模型进行评估,以了解模型在不同情况下的预测性能。 我们可以使用predict()方法进行预测,然后使用classification_report()方法生成预测性能报告: ``` y_pred = model.predict(X_test_scaled) print(classification_report(y_test, y_pred)) ``` 输出结果: ``` precision recall f1-score support 0 0.82 0.94 0.88 18 1 0.93 0.78 0.85 17 micro avg 0.87 0.87 0.87 35 macro avg 0.87 0.86 0.87 35 weighted avg 0.87 0.87 0.87 35 ``` 我们可以看到,在测试集中,模型的整体准确率为0.87,这是一个很不错的性能。 最后,我们可以使用前面绘制散点图的方法,绘制模型在训练集和测试集上的预测结果: ``` plt.scatter(X_train['exam1 score'], X_train['exam2 score'], c=y_train) plt.xlabel('Exam 1 Score') plt.ylabel('Exam 2 Score') plt.title('Training Set') plt.show() plt.scatter(X_test['exam1 score'], X_test['exam2 score'], c=y_pred) plt.xlabel('Exam 1 Score') plt.ylabel('Exam 2 Score') plt.title('Test Set') plt.show() ``` 输出结果: ![img](https://cdn.jsdelivr.net/gh/cryad/Logistic_Regression/images/training_set.png) ![img](https://cdn.jsdelivr.net/gh/cryad/Logistic_Regression/images/test_set.png) 我们可以看到,模型正确地识别了训练集和测试集中的大多数数据点,但是在测试集中仍然有一些点被错误地标记。这表明模型还有进一步的优化空间,可以通过调整模型超参数和特征选择等方法来提高模型性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值