Preference Learning

偏好学习是机器学习的一个子领域,专注于通过已知偏好信息建立预测模型。主要任务包括偏好表达(如效用函数、部分/整体排名)、用户/物品描述等。排名误差的衡量方式有斯皮尔曼简捷法、Kendall's距离等。此外,文章还探讨了加权排名误差、二分排名问题以及多种偏好学习技术,如学习效用函数、构建偏好关系等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Introduction

维基百科中对Preference Learning的解释是这样的:通过已知的可观测的偏好信息构建一个偏好预测模型。偏好学习是机器学习的一个子领域,并且它的主要任务是学会进行排名(”learning to rank”)。

  • 这张图显示了人工智能和偏好学习的关系以及偏好学习的应用领域

ML和PL的关系

  • 这张图显示了Preference 在人工智能中的应用

PL的应用

Preference Learning Task

偏好学习问题可以从好几个维度去学习:

  • 偏好表达:
    • 效用函数(utility function):数值型表达,或者按顺序表达
    • 偏好关系:部分/整体排名(Ranking)
    • 逻辑表示法…
  • 用户/物品的描述:
    • 标识符,特征向量,结构化对象…
  • 训练数据集的类型:
    • 直接/间接的信息反馈
    • 完整/不完整的关系
    • 公用程式(utilities)

1)偏好表达

  • 偏好的评估是绝对的,可以是二值型也可以是数值型或者枚举型的效用函数表达法。
  • 偏好的比较是相对的,采用的是部分排名或者整体排名,是偏好关系表达法。

偏好表达

2)用户/物品的描述

  • 在多标签分类问题中用户的描述是二值型数据,0表示不喜欢,1表示喜欢等。
  • 它的预测结果也是二分类的数值。

多标签分类

  • 在多标签排名问题中用户的描述是二值型数据
  • 它的预测结果数值型的按顺序表达的偏好,1表示最喜欢。

多标签排名

  • 在标签排名问题中用户的描述是一个排名
  • 它的预测结果数值型的按顺序表达的偏好,1表示最喜欢。

标签排名

  • 下面这个是标准的标签排名问题。
  • 结合了相对的和绝对的排名。

标准

  • 实例(用户)排名,根据用户的特征对用户进行排名。

实例排名

  • 这是一个协同过滤问题,每一行代表一个用户(user),每
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值