问题简化为,给定一个节点,求另外一点与它的lca的深度最大,可知dfs序列最接近的两点的lca的深度最大,所以,可以将给定集合中的节点按他的dfs序从小到大排序,二分找到最接近的那个,因为二分找到的只是比它大的最接近的一个,可能前一个比它小的更为接近,所以做两次判断。集合中有重复元素,并不会妨碍我们判断。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
#include <cmath>
#include <set>
#include <queue>
using namespace std;
const int INF=1e9+10;
const double EPS = 1e-10;
typedef long long ll;
const int mod=1e9+7;
const int N = 100002;
const int M = 25;
int n,m;
int dir[N];
int dp[2*N][M]; //这个数组记得开到2*N,因为遍历后序列长度为2*n-1
bool vis[N];
struct edge
{
int u,v,w,next;
}e[2*N];
int tot,head[N];
inline void add(int u ,int v ,int w ,int &k)
{
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
u = u^v; v = u^v; u = u^v;
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
}
int ver[2*N],R[2*N],first[N];
//ver:节点编号 R:深度 first:点编号位置
void dfs(int u ,int dep)
{
vis[u] = true; ver[++tot] = u; first[u] = tot; R[tot] = dep;
for(int k=head[u]; k!=-1; k=e[k].next)
if( !vis[e[k].v] )
{
int v = e[k].v,w = e[k].w;
dfs(v,dep+1);
ver[++tot] = u; R[tot] = dep;
}
}
//返回的不是最小值,而是最小值时对应的下标
void ST(int n)
{
for(int i=1;i<=n;i++)
dp[i][0] = i;
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
int a = dp[i][j-1] , b = dp[i+(1<<(j-1))][j-1];
dp[i][j] = R[a]<R[b]?a:b;
}
}
}
//中间部分是交叉的。
int RMQ(int l,int r)
{
int k=0;
while((1<<(k+1))<=r-l+1)
k++;
int a = dp[l][k], b = dp[r-(1<<k)+1][k]; //保存的是编号
return R[a]<R[b]?a:b;
}
int LCA(int u ,int v)
{
int x = first[u] , y = first[v];
if(x > y) swap(x,y);
int res = RMQ(x,y);
return ver[res];
}
void init1(){
memset(head,-1,sizeof(head));
memset(vis,false,sizeof(vis));
}
void init2(){
tot=0;
dfs(1,1);
ST(2*N-1);
}
vector<pair<int,int> >S;
int main(){
//freopen("out.txt","w",stdout);
while(scanf("%d %d",&n,&m)!=EOF){
int u,v,k=0;
init1();
for(int i=0;i<n-1;i++){
scanf("%d %d",&u,&v);
add(u,v,1,k);
}
init2();
while(m--){
int ans=0;
S.clear();
int a1,b1,x;
scanf("%d",&a1);
for(int i=0;i<a1;i++){
scanf("%d",&x);
S.push_back(make_pair(first[x],x));
}
sort(S.begin(),S.end());
scanf("%d",&b1);
for(int i=0;i<b1;i++){
scanf("%d",&x);
int po=lower_bound(S.begin(),S.end(),make_pair(first[x],0))-S.begin();
if(po!=S.size()){
ans=max(ans,R[first[LCA(x,S[po].second)]]);
}
po--;
if(po>=0){
ans=max(ans,R[first[LCA(x,S[po].second)]]);
}
}
printf("%d\n",ans );
}
}
return 0;
}