MNIST:tensorflow from tensorflow.examples.tutorials.mnist import input_data

本文详细介绍了如何利用TensorFlow库处理经典MNIST手写数字识别数据集。从导入tensorflow.examples.tutorials.mnist模块开始,设置环境变量以减少日志输出,接着指定在GPU上运行代码,为深度学习模型提供高效计算能力。
摘要由CSDN通过智能技术生成

# -*- encoding:utf-8 -*-

import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.client import device_lib
# print(device_lib.list_local_devices())
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
mnist = input_data.read_data_sets('./data/demo1_mnist/mnist_data/', one_hot=True)


numClasses = 10
inputSize = 784
numHiddenUnits = 50
trainingIterations = 10000
batchSize = 100

X = tf.placeholder(tf.float32, shape=[None, inputSize]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值