# -*- encoding:utf-8 -*-
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.client import device_lib
# print(device_lib.list_local_devices())
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
mnist = input_data.read_data_sets('./data/demo1_mnist/mnist_data/', one_hot=True)
numClasses = 10
inputSize = 784
numHiddenUnits = 50
trainingIterations = 10000
batchSize = 100
X = tf.placeholder(tf.float32, shape=[None, inputSize]
MNIST:tensorflow from tensorflow.examples.tutorials.mnist import input_data
最新推荐文章于 2024-09-20 20:07:27 发布
本文详细介绍了如何利用TensorFlow库处理经典MNIST手写数字识别数据集。从导入tensorflow.examples.tutorials.mnist模块开始,设置环境变量以减少日志输出,接着指定在GPU上运行代码,为深度学习模型提供高效计算能力。
摘要由CSDN通过智能技术生成