PyTorch 第四章第二节:损失函数(一)

本文深入探讨了损失函数的基本概念,重点介绍了交叉熵损失函数的原理和应用。我们详细阐述了NLL(负对数似然)、BCE(二元交叉熵)以及BCEWithLogitsLoss的区别和联系,这些是深度学习中用于分类问题尤其是二分类任务的常用损失函数。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值