PyTorch
冰雪棋书
这个作者很懒,什么都没留下…
展开
-
第五周第三节:TensorBoard使用(一)
1、SummaryWriter2、add_scalar and add_histogram3、模型指标监控原创 2021-03-17 18:43:50 · 100 阅读 · 0 评论 -
PyTorch 第五章第二节:可视化工具--TensorBoard
1、TensorBoard简介2、TensorBoard安装3、TensorBoard运行可视化原创 2021-03-16 19:21:20 · 104 阅读 · 0 评论 -
PyTorch 第三周第一节:模型创建步骤与nn.Module
1、网络模型创建步骤2、nn.Module原创 2020-12-22 19:58:12 · 106 阅读 · 0 评论 -
PyTorch 第二周第四节:transforms图像增强(二)
三生三世原创 2020-12-17 19:42:07 · 178 阅读 · 0 评论 -
PyTorch 第二周第三节:transforms图像增强(一)
1、数据增强2、transforms----裁剪3、transforms----翻转和旋转原创 2020-12-16 20:35:10 · 435 阅读 · 0 评论 -
PyTorch 第二周第二节:图像预处理----transforms
1、transforms运行机制2、数据标准化-------transforms.normalize原创 2020-12-15 20:18:23 · 130 阅读 · 0 评论 -
PyTorch 第二周第一节课:Dataloader与Dataset
1、人民币二分类2、Dataloader与Datasettorch.utils.data.DataLoader功能:构建可迭代的数据装载器dataset:Dataset类,决定数据从哪读取及如何读取 batchsize:批大小 num_works:是否多进程读取数据 shuffle:每个epoch是否乱序 drop_last:当样本数不能被batchsize整除时,是否舍弃最后一批数据Epoch:所有训练样本都已输入到模型中,称为一个EpochIteration:.原创 2020-12-14 20:43:43 · 272 阅读 · 1 评论 -
PyTorch 第一周第五节:autograd与逻辑回归
torch.autogradautograd----自动求导系统1、torch.autograd.backward功能:自动求取梯度tensors:用于求导的张量,如loss, retain_graph:保存计算图 create_graph:创建导数计算图,用于高阶求导 grad_tensors:多梯度权重torch.autograd.backward(tensors, grad_tensors=None,原创 2020-12-11 21:35:44 · 107 阅读 · 0 评论 -
PyTorch 第一周第四节:计算图与动态图机制
1、计算图2、PyTorch的动态图机制1、计算图计算图是用来描述运算的有向无环图 计算图有两个主要元素:结点(Node)和边(Edge) 结点表示数据,如向量、矩阵、张量 边表示运算,如加减乘除卷积等 eg:用计算图表示:y=(x+w)*(w+1) a=x+w b=w+1 y=a*b 计算图与梯度求导:y对w求导得5 叶子结点:用户创建的结点称为叶子结点,如X与W is_leaf指示张量是否为叶子结点 grad_fn:记录创建该张量时所用的方法(函数) y.grad_f...原创 2020-12-10 22:00:35 · 135 阅读 · 0 评论 -
PyTorch 第一章第三节:张量操作与线性回归
张量操作一、张量拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接torch.cat(tensors,dim=0,out=None)tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度dim上进行拼接torch.stack(tensors,dim=0,out=None)tensors:张量序列dim:要拼接的维度代码示例t=torch.ones((2,3))t_0=torch.cat([t,t],di原创 2020-12-09 20:34:57 · 142 阅读 · 1 评论 -
PyTorch 第一章第二节:张量简介与创建
张量是什么?标量:0维张量向量:1维张量矩阵:2维张量3维张量 RGBn维张量张量是一个多维数组,它是标量、向量、矩阵的高维拓展Tensor 与VariableVariableVariable是torch.autograd中的数据类型,主要用于封装Tensor,进行自动求导data:被包装的Tensorgrad:data的梯度grad_fn:创建Tensor的Function,是自动求导的关键requires_grad:指示是否需要梯度is_leaf:指示是否是叶子结点(张原创 2020-12-09 20:32:01 · 342 阅读 · 0 评论 -
pytorch 第一章第一节:PyTorch简介
张量操作一、张量拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接torch.cat(tensors,dim=0,out=None)tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度dim上进行拼接torch.stack(tensors,dim=0,out=None)tensors:张量序列dim:要拼接的维度代码示例t=torch.ones((2,3))t_0=torch.cat([t,t],di原创 2020-12-08 18:55:44 · 197 阅读 · 0 评论 -
PyTorch 第五章第一节:学习率调整策略
1、为什么要调整学习率2、pytorch的六种学习率调整策略3、学习率调整小结原创 2021-03-11 19:47:01 · 112 阅读 · 0 评论 -
PyTorch 第四章第四节:优化器(二)
1、learning rate 学习率2、momentum 动量3、torch.optim.SGD4、PyTorch的十种优化器原创 2021-03-10 19:14:22 · 83 阅读 · 0 评论 -
PyTorch 常用代码整理
本文代码基于 PyTorch 1.x 版本,需要用到以下包:importcollectionsimportosimportshutilimporttqdmimportnumpyasnpimportPIL.Imageimporttorchimporttorchvision基础配置检查 PyTorch 版本torch.__version__#PyTorchversiontorch.version.cuda...原创 2021-03-04 16:58:12 · 410 阅读 · 1 评论 -
PyTorch 第四章第四节:优化器(一)
1、什么是优化器2、optimizer的属性3、optimizer的方法原创 2021-02-22 19:11:05 · 90 阅读 · 0 评论 -
PyTorch 第四章第三节:损失函数(二)
5、nn.L1Loss6、nn.MSELoss7、nn.SmoothL1Loss8、nn.PossionNLLLoss9、nn.KLDivloss10、nn.MarginRankingLoss11、nn.MultiLabelMarginLoss12、nn.SoftMarginLoss13、nn.MultiLabelSoftMarginLoss14、nn.MultiMarginLoss15、nn.TripletMarginLoss16、nn.HingeEmbeddi原创 2021-02-04 18:01:21 · 166 阅读 · 0 评论 -
PyTorch 第四章第二节:损失函数(一)
目录1、损失函数概念2、交叉熵损失函数3、NLL/BCE/BCEWithLogits Loss1、损失函数概念2、交叉熵损失函数3、NLL/BCE/BCEWithLogits Loss原创 2021-01-06 21:13:02 · 92 阅读 · 0 评论 -
PyTorch 第四周第一节:权值初始化
1、梯度消失与爆炸2、Xavier方法与kaiming方法3、常用初始化方法原创 2021-01-06 19:33:25 · 100 阅读 · 0 评论 -
PyTorch 第三周第三节:nn网络层--卷积层
dd原创 2021-01-04 10:57:47 · 86 阅读 · 0 评论 -
PyTorch 第三周第二节:模型容器和AlexNet构建
端到端原创 2020-12-31 21:14:42 · 121 阅读 · 0 评论