LeetCode——5835. 最大方阵和(Maximum Matrix Sum)[中等]——分析及代码(Java)

该博客详细分析了LeetCode中5835题目的解决方案,采用贪心策略,根据负数元素的奇偶性决定如何变换矩阵中的元素,以最大化矩阵的和。提供了Java实现代码,并展示了优秀的运行时间和内存消耗表现。
摘要由CSDN通过智能技术生成

LeetCode——5835. 最大方阵和[Maximum Matrix Sum][中等]——分析及代码[Java]

一、题目

给你一个 n x n 的整数方阵 matrix 。你可以执行以下操作 任意次 :

  • 选择 matrix 中 相邻 两个元素,并将它们都 乘以 -1 。

如果两个元素有 公共边 ,那么它们就是 相邻 的。

你的目的是 最大化 方阵元素的和。请你在执行以上操作之后,返回方阵的 最大 和。

示例 1:

输入:matrix = [[1,-1],[-1,1]]
输出:4
解释:我们可以执行以下操作使和等于 4 :
- 将第一行的 2 个元素乘以 -1 。
- 将第一列的 2 个元素乘以 -1 。

示例 2:

输入:matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
输出:16
解释:我们可以执行以下操作使和等于 16 :
- 将第二行的最后 2 个元素乘以 -1 。

提示:

  • n == matrix.length == matrix[i].length
  • 2 <= n <= 250
  • -10^5 <= matrix[i][j] <= 10^5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-matrix-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

二、分析及代码

1. 贪心

(1)思路

通过一次或多次操作,可同时完成任意 2 个相邻或不相邻元素的符号转化,因此结合贪心算法求解:

  • 若负元素个数为偶数,将方阵中所有元素转化为非负整数;
  • 若负元素个数为奇数,则将绝对值最小的元素保留为负。

(2)代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值