每日一小题

机器人一次可以走1m,2m或3m。编写一个动态规划算法求机器人走n米有多少种走法
简单的一种递推思想
当n 1时,只有一种解法
当n 2时,有两种。
当n == 3时,有四种。
1 1 1,2 1,1 2 ,3.
当n
4时,有七种。
1 1 1 1,1 3 ,3 1,2 2,2 1 1,1 1 2,1 2 1.
当n
5时,有十三种。
1 1 1 1 1,1 1 1 1 2,1 1 2 1,1 2 1 1,2 1 1 1,
1 2 2,2 1 2,2 2 1,1 1 3,
1 3 1 ,3 1 1, 3 2 ,2 3 .
得到当n>3时,S(n)=S(n-1)+S(n-2)+S(n-3);

#include<stdio.h>
int path(int n);
int main()
{
	int n;
	scanf("%d",&n);
	n=path(n);
	printf("%d",n);
	return 0;
} 
int path(int n)
{
	if(n==1) return 1;
	else if(n==2) return 2;
	else if(n==3) return 4;
	else if(n>3) return path(n-1)+path(n-2)+path(n-3);
}

还有一博主的方法也不错,总体来说递归还是占用空间比较多的。

/*
 * 题目:
 * 一个机器人每步可以走 1 米、2 米或 3 米。
 * 编写一个动态规划算法,计算机器人走n 米,有多少种走法(考虑步骤的次序)。
 *
 *
 * 算法思路:
 * 设总路程为n米,共有s(n)种走法
 *
 * 假设初值s(0) = 1
 * 易知s(1) = 1  s(2) = 2
 * 可以求出递推式:s(n) = s(n - 1) + s(n - 2) + s(n - 3) 
 *
 * 递归求s(n)的方法:return s(n - 1) + s(n - 2) + s(n - 3);
 * 用动态规划求解:
 * 建立一个长度为3的数组,将每次运算的结果存进数组中,最后数组的和即为所求
 * 这样可以避免每次计算s(i)都要从s(0) + s(1) + s(2) 算起
 *
 * 时间复杂度:Θ(n) 
 * 空间复杂度:Θ(1)
 *
 */
 
#include <iostream>
using namespace std;
 
int robotWalk(int n)
{
	int a[3] = {1, 1, 2};
 
	if(n <= 0)
	{
		return 0;
	}
	else if(n == 1)
	{
		return a[1];
	}
	else if(n == 2)
	{
		return a[2];
	}
	else
	{
		int count = 0;
		int temp = 0;
		for(int i = 2; i < n; i++)
		{
			temp = a[2] + a[1] + a[0];
			a[count] = temp;
			count = (count + 1) % 3;
		}
 
		return temp;
	}
}
 
int main()
{
	int n;
	char ch = 'y';== 'Y')
	{
	while(ch == 'y' || ch 
		cout<<"请输入机器人的总路程:";
		cin>>n;
		if(n < 0)
		{
			cout<<"输入错误,总路程必须大于等于0"<<endl;
		}
		cout<<"共有"<<robotWalk(n)<<"种走法"<<endl;
 
		cout<<endl<<"是否继续?y/n:";
		cin>>ch;
	}
 
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值