机器人一次可以走1m,2m或3m。编写一个动态规划算法求机器人走n米有多少种走法
简单的一种递推思想
当n 1时,只有一种解法
当n 2时,有两种。
当n == 3时,有四种。
1 1 1,2 1,1 2 ,3.
当n4时,有七种。
1 1 1 1,1 3 ,3 1,2 2,2 1 1,1 1 2,1 2 1.
当n5时,有十三种。
1 1 1 1 1,1 1 1 1 2,1 1 2 1,1 2 1 1,2 1 1 1,
1 2 2,2 1 2,2 2 1,1 1 3,
1 3 1 ,3 1 1, 3 2 ,2 3 .
得到当n>3时,S(n)=S(n-1)+S(n-2)+S(n-3);
#include<stdio.h>
int path(int n);
int main()
{
int n;
scanf("%d",&n);
n=path(n);
printf("%d",n);
return 0;
}
int path(int n)
{
if(n==1) return 1;
else if(n==2) return 2;
else if(n==3) return 4;
else if(n>3) return path(n-1)+path(n-2)+path(n-3);
}
还有一博主的方法也不错,总体来说递归还是占用空间比较多的。
/*
* 题目:
* 一个机器人每步可以走 1 米、2 米或 3 米。
* 编写一个动态规划算法,计算机器人走n 米,有多少种走法(考虑步骤的次序)。
*
*
* 算法思路:
* 设总路程为n米,共有s(n)种走法
*
* 假设初值s(0) = 1
* 易知s(1) = 1 s(2) = 2
* 可以求出递推式:s(n) = s(n - 1) + s(n - 2) + s(n - 3)
*
* 递归求s(n)的方法:return s(n - 1) + s(n - 2) + s(n - 3);
* 用动态规划求解:
* 建立一个长度为3的数组,将每次运算的结果存进数组中,最后数组的和即为所求
* 这样可以避免每次计算s(i)都要从s(0) + s(1) + s(2) 算起
*
* 时间复杂度:Θ(n)
* 空间复杂度:Θ(1)
*
*/
#include <iostream>
using namespace std;
int robotWalk(int n)
{
int a[3] = {1, 1, 2};
if(n <= 0)
{
return 0;
}
else if(n == 1)
{
return a[1];
}
else if(n == 2)
{
return a[2];
}
else
{
int count = 0;
int temp = 0;
for(int i = 2; i < n; i++)
{
temp = a[2] + a[1] + a[0];
a[count] = temp;
count = (count + 1) % 3;
}
return temp;
}
}
int main()
{
int n;
char ch = 'y';== 'Y')
{
while(ch == 'y' || ch
cout<<"请输入机器人的总路程:";
cin>>n;
if(n < 0)
{
cout<<"输入错误,总路程必须大于等于0"<<endl;
}
cout<<"共有"<<robotWalk(n)<<"种走法"<<endl;
cout<<endl<<"是否继续?y/n:";
cin>>ch;
}
return 0;
}