这篇论文运用parallel data,进行文本风格迁移(从莎士比亚风转为现代风)。
整体模型思路比较简洁明了:attention-based seq2seq + pointer network
数据集大小为:
- training: 18395
- val: 1218
- test: 1462
值得注意的是,由于数据集比较小,作者采用了很多减少参数的方法来训练模型:
- 采用pre-trained word embedding。训练词向量的方法也颇为有趣。
- 并没有直接使用Glove或是Word2Vec(作者给出的原因是原莎士比亚著作中有很多novel word forms,这些词应该不被包含在Glove或是Word2Vec中)。Instead, 作者直接在所有的训练集上预训了词向量。除训练集之外,作者还尝试引入了额外的训练语句PTB(Marcus et al. 1993)。在论文的实验部分,作者有给出引入PTB带来的影响。
- 利用了一个外部词典(C)(map shakespearean words to modern English words)。借鉴Faruqui et al.(2014),利用外部词典更新已有embedding (P)的方法:给定词向量集
, 词典

该论文介绍了一种使用平行数据进行文本风格迁移的方法,将莎士比亚风格的语言转化为现代风格。通过attention-based seq2seq模型与pointer network结合,处理了小规模数据集的训练问题。作者使用预训练的词嵌入,并在训练集上直接训练,避免使用Glove或Word2Vec。外部词典用于映射莎士比亚词汇到现代英语。encoder部分采用了bi-LSTM的add操作而非concatenate,减少未知词(UNK)的出现,CopyNet和post-processing策略进一步优化了结果。源语言和目标语言的嵌入共享提升了性能。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



