Codefoeces 387E - George and Cards 贪心+线段树

首先要知道每次拿走最小才会达到最优,因为最小的不会给其他的提供任何加分,只有可能减小加分。

删除卡片的次序确定了,剩下的就是确定每段区间的左右端点。


pos[i] 表示数字 i 在初始序列中的位置。

首先枚举i (i = 1 -> n),如果不需删除,则将pos[i]放入set<int> S中,如果不需删除,则在S中二分查找上下界。

总的时间复杂度为o(  (n-k)*log(k)  )。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>

#pragma comment(linker,"/STACK:1024000000");
#define EPS (1e-6)
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f
#define Mod 1000000007
#define mod 1000000007

/** I/O Accelerator Interface .. **/
#define g (c=getchar())
#define d isdigit(g)
#define p x=x*10+c-'0'
#define n x=x*10+'0'-c
#define pp l/=10,p
#define nn l/=10,n
template<class T> inline T& RD(T &x)
{
    char c;
    while(!d);
    x=c-'0';
    while(d)p;
    return x;
}
template<class T> inline T& RDD(T &x)
{
    char c;
    while(g,c!='-'&&!isdigit(c));
    if (c=='-')
    {
        x='0'-g;
        while(d)n;
    }
    else
    {
        x=c-'0';
        while(d)p;
    }
    return x;
}
inline double& RF(double &x)      //scanf("%lf", &x);
{
    char c;
    while(g,c!='-'&&c!='.'&&!isdigit(c));
    if(c=='-')if(g=='.')
        {
            x=0;
            double l=1;
            while(d)nn;
            x*=l;
        }
        else
        {
            x='0'-c;
            while(d)n;
            if(c=='.')
            {
                double l=1;
                while(d)nn;
                x*=l;
            }
        }
    else if(c=='.')
    {
        x=0;
        double l=1;
        while(d)pp;
        x*=l;
    }
    else
    {
        x=c-'0';
        while(d)p;
        if(c=='.')
        {
            double l=1;
            while(d)pp;
            x*=l;
        }
    }
    return x;
}
#undef nn
#undef pp
#undef n
#undef p
#undef d
#undef g
using namespace std;

int num[1000010];
int pos[1000010];
bool ap[1000010];

int st[4001000];

set<int> s;

int Init(int site,int l,int r)
{
    if(l == r)
        return st[site] = 1;

    int mid = (l+r)>>1;

    return st[site] = Init(site<<1,l,mid) + Init(site<<1|1,mid+1,r);
}

int Query(int site,int L,int R,int l,int r)
{
    if(L == l && R == r)
        return st[site];

    int mid = (L+R)>>1;

    if(r <= mid)
        return Query(site<<1,L,mid,l,r);
    if(mid < l)
        return Query(site<<1|1,mid+1,R,l,r);
    return Query(site<<1,L,mid,l,mid) + Query(site<<1|1,mid+1,R,mid+1,r);
}

void Update(int site,int l,int r,int x)
{
    if(l == r)
    {
        st[site] = 0;
        return ;
    }

    int mid = (l+r)>>1;

    if(x <= mid)
        Update(site<<1,l,mid,x);
    else
        Update(site<<1|1,mid+1,r,x);

    st[site] = st[site<<1] + st[site<<1|1];
}

int main()
{
    int n,k,i,j,x;

    scanf("%d %d",&n,&k);

    for(i = 1;i <= n; ++i)
        scanf("%d",&num[i]),pos[num[i]] = i;

    memset(ap,false,sizeof(ap));

    for(i = 1;i <= k; ++i)
        scanf("%d",&x),ap[x] = true;

    set<int>::iterator it;

    LL sum = 0;

    Init(1,1,n);
    s.insert(n+1);
    s.insert(0);
    for(i = 1;i <= n; ++i)
    {
        if(ap[i])
        {
            s.insert(pos[i]);
            continue;
        }



        it = s.upper_bound(pos[i]);

        int r = *it-1;
        int l = *(--it)+1;

        sum += Query(1,1,n,l,r);
        Update(1,1,n,pos[i]);
    }

    cout<<sum<<endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值