动态规划

动态规划

动态规划问题的一般形式就是求最值。 动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

既然是要求最值,核心问题是什么呢?求解动态规划的核心问题是穷举。 因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值呗。

首先,动态规划的穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。

动态规划问题一定会具备 「最优子结构」 ,才能通过子问题的最值得到原问题的最值。

虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出 正确的「状态转移方程」 才能正确地穷举。

以上提到的 重叠子问题、最优子结构、状态转移方程 就是动态规划三要素。具体什么意思等会会举例详解,但是在实际的算法问题中,写出状态转移方程是最困难的.

明确「状态」 -> 定义 dp 数组/函数的含义 -> 明确「选择」-> 明确 base case。

斐波那契数列的数学形式就是递归的,写成代码就是这样:

int fib(int N) {
    if (N == 1 || N == 2) return 1;
    return fib(N - 1) + fib(N - 2);
}
    //给一个数返回它的结果
    //1.记忆map一定要放到方法体的外面
    HashMap<Integer,Integer> map=new HashMap<>();
    public int fib(int n) {
        //base case 递归的结束条件
        if(n==0) return 0;//没有这一行就会有栈溢出异常 StackOverflowError
        if(n==1||n==2) return 1;
        int l,r;
        if(!map.containsKey(n)){
            if(! map.containsKey(n-1)) {
                l= fib(n - 1)%1000000007;
                map.put(n-1,l) ;
            }else{
                l=map.get(n-1);
            }
            if(! map.containsKey(n-2)) {
                r= fib(n - 2)%1000000007;
                map.put(n-2,r) ;
            }else{
                r=map.get(n-2);
            }
            map.put(n,(l+r)%1000000007);
        }
        return map.get(n);
    }  

这个不用多说了,学校老师讲递归的时候似乎都是拿这个举例。我们也知道这样写代码虽然简洁易懂,但是十分低效,低效在哪里?假设 n = 20,请画出递归树。

PS:但凡遇到需要递归的问题,最好都画出递归树,这对你分析算法的复杂度,寻找算法低效的原因都有巨大帮助。
在这里插入图片描述
所谓的动态规划就是一颗 递归树的后序遍历 而结束条件是我们知道的 叶子结点 往上面不断遍历操作 最后通过记忆数组或者map<记忆器>进行剪枝的过程 知道得到最后的节点就好了
这里,引出「状态转移方程」这个名词,实际上就是描述问题结构的数学形式:

在这里插入图片描述

为啥叫「状态转移方程」?为了听起来高端。你把 f(n) 想做一个状态 n,这个状态 n 是由状态 n - 1 和状态 n - 2 相加转移而来,这就叫状态转移,仅此而已。

你会发现,上面的几种解法中的所有操作,例如 return f(n - 1) + f(n - 2),dp[i] = dp[i - 1] + dp[i - 2],以及对备忘录或 DP table 的初始化操作,都是围绕这个方程式的不同表现形式。可见列出「状态转移方程」的重要性,它是解决问题的核心。很容易发现,其实状态转移方程直接代表着暴力解法。

千万不要看不起暴力解,动态规划问题最困难的就是写出状态转移方程,即这个暴力解。优化方法无非是用备忘录或者 DP table,再无奥妙可言。

动态规划是把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再根据子问题的解以得出原问题的解。动态规划往往用于优化递归问题,例如斐波那契数列,如果运用递归的方式来求解会重复计算很多相同的子问题,利用动态规划的思想可以减少计算量。

通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,具有天然剪枝的功能,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。


题目解析

在这里插入图片描述
先确定「状态」,也就是原问题和子问题中变化的变量。由于硬币数量无限,所以唯一的状态就是目标金额amount。

然后确定dp函数的定义:函数 dp(n)表示,当前的目标金额是n,至少需要dp(n)个硬币凑出该金额。

然后确定「选择」并择优,也就是对于每个状态,可以做出什么选择改变当前状态。具体到这个问题,无论当的目标金额是多少,选择就是从面额列表coins中选择一个硬币,然后目标金额就会减少:

伪码框架

def coinChange(coins: List[int], amount: int):
    # 定义:要凑出金额 n,至少要 dp(n) 个硬币
    def dp(n):
        # 做选择,需要硬币最少的那个结果就是答案
        for coin in coins:
            res = min(res, 1 + dp(n - coin))
        return res
    # 我们要求目标金额是 amount
    return dp(amount)

最后明确 base case,显然目标金额为 0 时,所需硬币数量为 0;当目标金额小于 0 时,无解,返回 -1:

def coinChange(coins: List[int], amount: int):

    def dp(n):
        # base case
        if n == 0: return 0
        if n < 0: return -1
        # 求最小值,所以初始化为正无穷
        res = float('INF')
        for coin in coins:
            subproblem = dp(n - coin)
            # 子问题无解,跳过
            if subproblem == -1: continue
            res = min(res, 1 + subproblem)

        return res if res != float('INF') else -1

    return dp(amount)

至此,状态转移方程其实已经完成了,以上算法已经是暴力解法了,以上代码的数学形式就是状态转移方程:在这里插入图片描述
至此,这个问题其实就解决了,只不过需要消除一下重叠子问题,比如amount = 11, coins = {1,2,5}时画出递归树看看:

在这里插入图片描述
时间复杂度分析:子问题总数 x 解决每个子问题的时间。
子问题总数为递归树节点个数,这个比较难看出来,是 O(n^k),总之是指数级别的。每个子问题中含有一个 for 循环,复杂度为 O(k)。所以总时间复杂度为 O(k * n^k),指数级别。

import java.util.Arrays;

public  class Test {

        int[] mem;
        public   int coinChange(int[] coins, int amount) {

            mem = new int[amount + 1];
            Arrays.fill(mem, -666);
            return dp(coins,amount);
        }

        public int dp(int[] coins, int amount) {
        if(amount == 0) return 0;
        if(amount < 0) return -1;
        if(mem[amount]!=-666){
            return mem[amount];
        }
            int count =Integer.MAX_VALUE;
        for(int i=0; i<coins.length; i++)
        {
            int sub = dp( coins,amount-coins[i]) ;
            if (sub==-1) continue;
            count=Math.min(count,sub+1);
        }
            mem[amount]= (count==Integer.MAX_VALUE)? -1 : count;
            return mem[amount];
        } 
}
  public static void main(String[] args) {
        int[] a={2};
        Test t=new Test();
        System.out.println( t.coinChange( a,3));
    }

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

「最优子结构」 是某些问题的一种特定性质,并不是动态规划问题专有的。也就是说,很多问题其实都具有最优子结构,只是其中大部分不具有重叠子问题,所以我们不把它们归为动态规划系列问题而已。

我先举个很容易理解的例子:假设你们学校有 10 个班,你已经计算出了每个班的最高考试成绩。那么现在我要求你计算全校最高的成绩,你会不会算?当然会,而且你不用重新遍历全校学生的分数进行比较,而是只要在这 10 个最高成绩中取最大的就是全校的最高成绩。

我给你提出的这个问题就符合最优子结构:可以从子问题的最优结果推出更大规模问题的最优结果。让你算每个班的最优成绩就是子问题,你知道所有子问题的答案后,就可以借此推出全校学生的最优成绩这个规模更大的问题的答案。

你看,这么简单的问题都有最优子结构性质,只是因为显然没有重叠子问题,所以我们简单地求最值肯定用不出动态规划。

再举个例子:假设你们学校有 10 个班,你已知每个班的最大分数差(最高分和最低分的差值)。那么现在我让你计算全校学生中的最大分数差,你会不会算?可以想办法算,但是肯定不能通过已知的这 10 个班的最大分数差推到出来。因为这 10 个班的最大分数差不一定就包含全校学生的最大分数差,比如全校的最大分数差可能是 3 班的最高分和 6 班的最低分之差。

这次我给你提出的问题就不符合最优子结构,因为你没办通过每个班的最优值推出全校的最优值,没办法通过子问题的最优值推出规模更大的问题的最优值。前文 动态规划详解 说过,想满足最优子结,子问题之间必须互相独立。全校的最大分数差可能出现在两个班之间,显然子问题不独立,所以这个问题本身不符合最优子结构。

那么遇到这种最优子结构失效情况,怎么办?策略是:改造问题。 对于最大分数差这个问题,我们不是没办法利用已知的每个班的分数差吗,那我只能这样写一段暴力代码:

int result = 0;
for (Student a : school) {
    for (Student b : school) {
        if (a is b) continue;
        result = max(result, |a.score - b.score|);
    }
}
return result;

改造问题,也就是把问题等价转化:最大分数差,不就等价于最高分数和最低分数的差么,那不就是要求最高和最低分数么,不就是我们讨论的第一个问题么,不就具有最优子结构了么?那现在改变思路,借助最优子结构解决最值问题,再回过头解决最大分数差问题,是不是就高效多了?

当然,上面这个例子太简单了,不过请读者回顾一下,我们做动态规划问题,是不是一直在求各种最值,本质跟我们举的例子没啥区别,无非需要处理一下重叠子问题。

求一棵二叉树的最大值,不难吧(简单起见,假设节点中的值都是非负数):

int maxVal(TreeNode root) {
    if (root == null)
        return -1;
    int left = maxVal(root.left);
    int right = maxVal(root.right);
    return max(root.val, left, right);
}

你看这个问题也符合最优子结构,以root为根的树的最大值,可以通过两边子树(子问题)的最大值推导出来,结合刚才学校和班级的例子,很容易理解吧。

当然这也不是动态规划问题,旨在说明,最优子结构并不是动态规划独有的一种性质,能求最值的问题大部分都具有这个性质;但反过来,最优子结构性质作为动态规划问题的必要条件,一定是让你求最值的,以后碰到那种恶心人的最值题,思路往动态规划想就对了,这就是套路。

动态规划不就是从最简单的 base case 往后推导吗,可以想象成一个链式反应,不断以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。

找最优子结构的过程,其实就是证明状态转移方程正确性的过程,方程符合最优子结构就可以写暴力解了,写出暴力解就可以看出有没有重叠子问题了,有则优化,无则 OK。这也是套路,经常刷题的朋友应该能体会。

这里就不举那些正宗动态规划的例子了,读者可以翻翻历史文章,看看状态转移是如何遵循最优子结构的,这个话题就聊到这,下面再来看另外个动态规划迷惑行为。

dp 数组的遍历方向

我相信读者做动态规划问题时,肯定会对dp数组的遍历顺序有些头疼。我们拿二维dp数组来举例

有时候我们是正向遍历:
 
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++)
    for (int j = 0; j < n; j++)
        // 计算 dp[i][j]
    
有时候我们反向遍历:

for (int i = m - 1; i >= 0; i--)
    for (int j = n - 1; j >= 0; j--)
        // 计算 dp[i][j]
有时候可能会斜向遍历:

// 斜着遍历数组
for (int l = 2; l <= n; l++) {
    for (int i = 0; i <= n - l; i++) {
        int j = l + i - 1;
        // 计算 dp[i][j]
    }
}

甚至更让人迷惑的是,有时候发现正向反向遍历都可以得到正确答案,比如我们在 团灭 LeetCode 股票买卖问题 中有的地方就正反皆可。
那么,如果仔细观察的话可以发现其中的原因的。你只要把住两点就行了:

1、遍历的过程中,所需的状态必须是已经计算出来的。
2、遍历的终点必须是存储结果的那个位置。

下面来具体解释上面两个原则是什么意思。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

basecase

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

根据这个定义,我们可以把主函数的逻辑写出来:

public int minFallingPathSum(int[][] matrix) {
    int n = matrix.length;
    int res = Integer.MAX_VALUE; 
    // 终点可能在最后一行的任意一列
    for (int j = 0; j < n; j++) {
        res = Math.min(res, dp(matrix, n - 1, j));
    } 
    return res;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

int dp(int[][] matrix, int i, int j) {
    // 非法索引检查
    if (i < 0 || j < 0 ||
        i >= matrix.length ||
        j >= matrix[0].length) {
        // 返回一个特殊值
        return 99999;
    }
    // base case
    if (i == 0) {
        return matrix[i][j];
    }
    // 状态转移
    return matrix[i][j] + min(
            dp(matrix, i - 1, j), 
            dp(matrix, i - 1, j - 1),
            dp(matrix, i - 1, j + 1)
        );
} 
int min(int a, int b, int c) {
    return Math.min(a, Math.min(b, c));
}
public int minFallingPathSum(int[][] matrix) {
    int n = matrix.length;
    int res = Integer.MAX_VALUE;
    // 备忘录里的值初始化为 66666
    memo = new int[n][n];
    for (int i = 0; i < n; i++) {
        Arrays.fill(memo[i], 66666);
    }
    // 终点可能在 matrix[n-1] 的任意一列
    for (int j = 0; j < n; j++) {
        res = Math.min(res, dp(matrix, n - 1, j));
    }
    return res;
}

// 备忘录
int[][] memo; 
int dp(int[][] matrix, int i, int j) {
    // 1、索引合法性检查
    if (i < 0 || j < 0 ||
        i >= matrix.length ||
        j >= matrix[0].length) {

        return 99999;
    }
    // 2、base case
    if (i == 0) {
        return matrix[0][j];
    }
    // 3、查找备忘录,防止重复计算
    if (memo[i][j] != 66666) {
        return memo[i][j];
    }
    // 进行状态转移
    memo[i][j] = matrix[i][j] + min(
            dp(matrix, i - 1, j), 
            dp(matrix, i - 1, j - 1),
            dp(matrix, i - 1, j + 1)
        );

    return memo[i][j];
}

int min(int a, int b, int c) {
    return Math.min(a, Math.min(b, c));
}

这个解题思路应该是非常容易理解的。

**1 **在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

int dp(int[][] matrix, int i, int j) { 
    return matrix[i][j] + min(
            dp(matrix, i - 1, j), 
            dp(matrix, i - 1, j - 1),
            dp(matrix, i - 1, j + 1)
        );
}

在这里插入图片描述在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

思路
动态规划的是首先对数组进行遍历,当前最大连续子序列和为 sum,结果为 ans
如果 sum > 0,则说明 sum 对结果有增益效果,则 sum 保留并加上当前遍历数字
如果 sum <= 0,则说明 sum 对结果无增益效果,需要舍弃,则 sum 直接更新为当前遍历数字
每次比较 sum 和 ans的大小,将最大值置为ans,遍历结束返回结果
时间复杂度:O(n)
public int maxSubArray(int[] nums) {
        int ans = nums[0];
        int sum = 0;
        for(int num: nums) {
            if(sum > 0) {
                sum += num;
            } else {
                sum = num;
            }
            ans = Math.max(ans, sum);
        }
        return ans;
    }
 public int maxSubArray(int[] nums) {
        int pre = 0, maxAns = nums[0];
        for (int x : nums) {
            pre = Math.max(pre + x, x);
            maxAns = Math.max(maxAns, pre);
        }
        return maxAns;
    }

121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

思路
记录  今天之前买入的最小值 
计算  今天之前最小值买入,今天卖出的获利 ,也即 今天卖出的最大获利 
比较  每天的最大获利 ,取最大值即可
 public int maxProfit(int[] prices) {
        if(prices.length <= 1)
            return 0;
        int min = prices[0], max = 0;
        for(int i = 1; i < prices.length; i++) {
            min = Math.min(min, prices[i]);
            max = Math.max(max, prices[i] - min);
        }
        return max;
    }

416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意:

每个数组中的元素不会超过 100
数组的大小不会超过 200

示例 1:

输入: [1, 5, 11, 5]    输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

输入: [1, 2, 3, 5]    输出: false
解释: 数组不能分割成两个元素和相等的子集.
 public boolean canPartition(int[] nums) {
     int len = nums.length;
     // 题目已经说非空数组,可以不做非空判断
     int sum = 0;
     for (int num : nums) {
         sum += num;
     }
     // 特判:如果是奇数,就不符合要求
    if(sum%2!=0) return false;
     int target = sum / 2;
     // 创建二维状态数组,行:物品索引,列:容量(包括 0)
     boolean[][] dp = new boolean[len][target + 1];
     // 先填表格第 0 行,第 1 个数只能让容积为它自己的背包恰好装满
     if (nums[0] <= target) {
         dp[0][nums[0]] = true;
     }
     // 再填表格后面几行
     for (int i = 1; i < len; i++) {
         for (int j = 0; j <= target; j++) {
             // 直接从上一行先把结果抄下来,然后再修正
             dp[i][j] = dp[i - 1][j];
             if (nums[i] == j) {
                 dp[i][j] = true;
                 continue;
             }
             if (nums[i] < j) {
                 dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]];
             }
         }
     }
     return dp[len - 1][target];
 }

回头去看看背包九讲再更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值