文章目录
第1章 Spark SQL概述
1.1 什么是Spark SQL
Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块。
与基本的Spark RDD API不同,Spark SQL的抽象数据类型为Spark提供了关于数据结构和正在执行的计算的更多信息。
在内部,Spark SQL使用这些额外的信息去做一些额外的优化,有多种方式与Spark SQL进行交互,比如: SQL和DatasetAPI。
当计算结果的时候,使用的是相同的执行引擎,不依赖你正在使用哪种API或者语言。这种统一也就意味着开发者可以很容易在不同的API之间进行切换,这些API提供了最自然的方式来表达给定的转换。
我们已经学习了Hive,它是将Hive SQL转换成 MapReduce然后提交到集群上执行,大大简化了编写 MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!
Spark SQL它提供了2个编程抽象,类似Spark Core中的RDD
-
DataFrame
-
DataSet
1.2 Spark SQL的特点
1.2.1 易整合
无缝的整合了 SQL 查询和 Spark 编程
1.2.2 统一的数据访问方式
使用相同的方式连接不同的数据源
1.2.3 兼容Hive
在已有的仓库上直接运行 SQL 或者 HiveQL
1.2.4 标准的数据连接
通过 JDBC 或者 ODBC 来连接
1.3 什么是DataFrame
在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。
同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从 API 易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API 要更加友好,门槛更低。
上图直观地体现了DataFrame和RDD的区别。
左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。
DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张表来对待
DataFrame也是懒执行的,但性能上比RDD要高,主要原因:优化的执行计划,即查询计划通过Spark catalyst optimiser进行优化。比如下面一个例子:
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。
如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
1.4 什么是DataSet
DataSet是分布式数据集合。DataSet是Spark 1.6中添加的一个新抽象,是DataFrame的一个扩展。它提供了RDD的优势(强类型,使用强大的lambda函数的能力)以及Spark SQL优化执行引擎的优点。DataSet也可以使用功能性的转换(操作map,flatMap,filter等等)。
-
是DataFrame API的一个扩展,是SparkSQL最新的数据抽象
-
用户友好的API风格,既具有类型安全检查也具有DataFrame的查询优化特性;
-
用样例类来定义DataSet中数据的结构信息,样例类中每个属性的名称直接映射到DataSet中的字段名称;
-
DataSet是强类型的。比如可以有DataSet[Car],DataSet[Person]。
-
DataFrame是DataSet的特列,DataFrame=DataSet[Row] ,所以可以通过as方法将DataFrame转换为DataSet。Row是一个类型,跟Car、Person这些的类型一样,所有的表结构信息都用Row来表示。
第2章 Spark SQL编程
2.1 SparkSession新的起始点
在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。
SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContex和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。当我们使用 spark-shell 的时候, spark 会自动的创建一个叫做spark的SparkSession, 就像我们以前可以自动获取到一个sc来表示SparkContext
2.2 DataFrame
Spark SQL的DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成SQL表达式。DataFrame API 既有transformation操作也有action操作,DataFrame的转换从本质上来说更具有关系, 而 DataSet API 提供了更加函数式的 API
2.2.1 创建DataFrame
在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换;还可以从Hive Table进行查询返回。
1)从Spark数据源进行创建
查看Spark支持创建文件的数据源格式
scala> spark.read.
csv jdbc load options parquet table textFile
format json option orc schema text
读取json文件创建DataFrame
scala> spark.read.json("/root/users.json")
res0: org.apache.spark.sql.DataFrame = [Age: bigint, name: string]
注意:如果从内存中获取数据,spark可以知道数据类型具体是什么,如果是数字,默认作为Int处理;但是从文件中读取的数字,不能确定是什么类型,所以用bigint接收,可以和Long类型转换,但是和Int不能进行转换
2)从RDD进行转换
查看下文
3)Hive Table进行查询返回
查看下文
2.2.2 SQL风格语法
SQL语法风格是指我们查询数据的时候使用SQL语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助
object SQLDemo {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val df: DataFrame = spark.read.json("in/users.json")
df.createTempView("users")
spark.sql("select * from users").show()
}
}
注意:普通临时表是Session范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.users
df.createGlobalTempView("users")
spark.sql("select * from global_temp.users").show()
2.2.3 DSL风格语法
DataFrame提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据,可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了
object SQLDemo {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val df: DataFrame = spark.read.json("in/users.json")
df.printSchema()
//查询name
df.select("name").show()
//查看所有列
df.select("*").show()
//查看name数据以及age+1数据
// 注意:涉及到运算的时候, 每列都必须使用$ 但是idea报错 spark-shell可以通过
df.select(df("name"),df("age")+1).show()
//查看”age”大于”19”的数据
df.filter(df("age")>19).show()
//按照”age”分组,查看数据条数
df.groupBy("age").count().show()
}
}
2.2.4 RDD转换为DataFrame
注意:如果需要RDD与DF或者DS之间操作,那么都需要引入 import spark.implicits._ (spark不是包名,而是sparkSession对象的名称,所以必须先创建SparkSession对象再导入. implicits是一个内部object)
- 前置条件
导入隐式转换并创建一个RDD
在某个目录下准备people.txt
zangsan,12
lisi,22
wangwu,25
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val sc = new SparkContext(conf)
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
val rdd: RDD[String] = sc.textFile("in/people.txt")
- 通过手动确定转换
rdd.map(_.split(","))
.map(x=>(x(0),x(1).toInt))
.toDF("name","age")
.show()
- 通过样例类反射转换(常用)
创建一个样例类
case class People(name:String,age:Int)
根据样例类将RDD转换为DataFrame
rdd.map(_.split(","))
.map(x=>People(x(0),x(1).toInt))
.toDF().show()
- 通过编程的方式(了解,一般编程直接操作RDD较少,操作hive或数据文件等较多)
package SQL
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
object SQLDemo {
case class People(name:String,age:Int)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val sc = new SparkContext(conf)
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
val rdd: RDD[(String, Int)] = sc.makeRDD(Array(("lisi",20),("wangwu",32),("zs",36)))
// 映射出来一个 RDD[Row], 因为 DataFrame其实就是 DataSet[Row]
val rowRdd: RDD[Row] = rdd.map(x=>Row(x._1,x._2))
//创建StructType类型
val schema = StructType(Array(
StructField("name", StringType),
StructField("age", IntegerType)
))
val df: DataFrame = spark.createDataFrame(rowRdd,schema)
df.show()
}
}
2.2.5 DataFrame转换为RDD
直接调用rdd即可
df.rdd.collect().foreach(println)
注意:得到的RDD存储类型为Row
2.3DataSet
DataSet是具有强类型的数据集合,需要提供对应的类型信息。
2.3.1 创建DataSet
1)使用样例类序列创建DataSet
scala> case class Person(name:String,age:Long)
defined class Person
scala> val ds=Seq(Person("wangwu",21),Person("lisi",20)).toD
toDF toDS
scala> val ds=Seq(Person("wangwu",21),Person("lisi",20)).toDS
ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
scala> ds.show()
+------+---+
| name|age|
+------+---+
|wangwu| 21|
| lisi| 20|
+------+---+
2)使用基本类型的序列创建DataSet
scala> val ds=Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]
scala> ds.show()
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
+-----+
注意:在实际使用的时候,很少用到把序列转换成DataSet,更多是通过RDD来得到DataSet
2.3.2 RDD转换为DataSet
SparkSQL能够自动将包含有样例类的RDD转换成DataSet,样例类定义了table的结构,样例类属性通过反射变成了表的列名。样例类可以包含诸如Seq或者Array等复杂的结构。
scala> val rdd=sc.textFile("/root/people.txt")
rdd: org.apache.spark.rdd.RDD[String] = /root/people.txt MapPartitionsRDD[1] at textFile at <console>:24
scala> case class Person(name:String,age:Long)
defined class Person
scala> rdd.map(_.split(",")).map(x=>Person(x(0),x(1).toInt)).toDS
res5: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
2.3.3 DataSet转换为RDD
调用rdd方法即可。
scala> res5.rdd
res7: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[10] at rdd at <console>:26
2.4 DataFrame与DataSet的互操作
2.4.1 DataFrame转为DataSet
scala> val df=spark.read.json("/root/users.json")
df: org.apache.spark.sql.DataFrame = [Age: bigint, name: string]
scala> case class Person(name:String,age:Long)
defined class Person
scala> df.as[Person]
res10: org.apache.spark.sql.Dataset[Person] = [Age: bigint, name: string]
这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便。在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。
2.4.2 Dataset转为DataFrame
scala> case class Person(name:String,age:Long)
defined class Person
scala> val ds=Seq(Person("zs",32),Person("ww",20)).toDS()
ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
scala> ds.toDF
res12: org.apache.spark.sql.DataFrame = [name: string, age: bigint]
2.5 RDD、DataFrame和DataSet之间的关系
在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:
RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的Spark版本中,DataSet有可能会逐步取代RDD和DataFrame成为唯一的API接口。
2.5.1 三者的共性
-
RDD、DataFrame、DataSet全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利;
-
三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算;
-
三者有许多共同的函数,如filter,排序等;
-
在对DataFrame和Dataset进行操作许多操作都需要这个包:import spark.implicits._(在创建好SparkSession对象后尽量直接导入)
-
三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
-
三者都有partition的概念
-
DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型
2.5.2 三者的区别
- RDD
- RDD一般和Spark MLib同时使用
- RDD不支SparkSQL操作
- DataFrame
- 与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值
- DataFrame与DataSet一般不与 Spark MLib 同时使用
- DataFrame与DataSet均支持 SparkSQL 的操作,比如select,groupby之类,还能注册临时表/视窗,进行 sql 语句操作
- DataFrame与DataSet支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
- DataSet
- Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。 DataFrame其实就是DataSet的一个特例
type DataFrame = Dataset[Row]
- DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段。而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息
2.5.3 三者的互相转化
2.6 IDEA创建SparkSQL程序
- 添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.1</version>
</dependency>
- 代码实现
object SparkSQL_Demo {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
//RDD=>DataFrame=>DataSet转换需要引入隐式转换规则,否则无法转换
//spark不是包名,是上下文环境对象名
import spark.implicits._
//读取json文件 创建DataFrame {"username": "lisi","age": 18}
val df: DataFrame = spark.read.json("D:\\dev\\workspace\\spark-bak\\spark-bak-00\\input\\test.json")
//df.show()
//SQL风格语法
df.createOrReplaceTempView("user")
//spark.sql("select avg(age) from user").show
//DSL风格语法
//df.select("username","age").show()
//*****RDD=>DataFrame=>DataSet*****
//RDD
val rdd1: RDD[(Int, String, Int)] = spark.sparkContext.makeRDD(List((1,"qiaofeng",30),(2,"xuzhu",28),(3,"duanyu",20)))
//DataFrame
val df1: DataFrame = rdd1.toDF("id","name","age")
//df1.show()
//DateSet
val ds1: Dataset[User] = df1.as[User]
//ds1.show()
//*****DataSet=>DataFrame=>RDD*****
//DataFrame
val df2: DataFrame = ds1.toDF()
//RDD 返回的RDD类型为Row,里面提供的getXXX方法可以获取字段值,类似jdbc处理结果集,但是索引从0开始
val rdd2: RDD[Row] = df2.rdd
//rdd2.foreach(a=>println(a.getString(1)))
//*****RDD=>DataSe*****
rdd1.map{
case (id,name,age)=>User(id,name,age)
}.toDS()
//*****DataSet=>=>RDD*****
ds1.rdd
//释放资源
spark.stop()
}
}
case class User(id:Int,name:String,age:Int)
2.7 用户自定义函数
2.7.1 UDF
输入一行,返回一个结果。在Shell窗口中可以通过spark.udf功能用户可以自定义函数。
scala> val df=spark.read.json("/root/users.json")
df: org.apache.spark.sql.DataFrame = [Age: bigint, name: string]
//注册UDF,功能为在数据前添加字符串
scala> spark.udf.register("addName",(x:String)=>"Name:"+x)
res0: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
scala> df.createOrReplaceTempView("people")
//应用UDF
scala> spark.sql("select addName(name),age from people").show()
+-----------------+----+
|UDF:addName(name)| age|
+-----------------+----+
| Name:Michael|null|
| Name:Andy| 30|
| Name:Justin| 19|
+-----------------+----+
2.7.2 UDAF
输入多行,返回一行。强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数, 如?count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。
需求:实现求平均年龄
- RDD算子方式实现
object SQLDemo {
case class People(name:String,age:Int)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val sc = new SparkContext(conf)
val rdd: RDD[(String, Int)] = sc.makeRDD(List(("zhangsan",20),("lisi",30),("wangwu",36)))
//转换结构
val mapRdd: RDD[(Int, Int)] = rdd.map {
case (name, age) => {
(age, 1)
}
}
//对年龄以及总人数进行聚合操作
val res: (Int, Int) = mapRdd.reduce {
(t1, t2) => {
(t1._1 + t2._1, t1._2 + t2._2)
}
}
println(res._1 / res._2)
}
}
- 自定义累加器方式实现(减少Shuffle)提高效率(模仿LongAccumulator累加器)
object SQLDemo {
case class People(name:String,age:Int)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val sc = new SparkContext(conf)
val rdd: RDD[(String, Int)] = sc.makeRDD(List(("zhangsan",20),("lisi",30),("wangwu",36)))
//创建累加器对象
val accumulator = new MyAccumulator
//注册累加器
sc.register(accumulator)
//使用累加器
rdd.foreach{
case(name,age)=>{
accumulator.add(age)
}
}
//获取累加器的值
println(accumulator.value)
}
}
class MyAccumulator extends AccumulatorV2[Int,Double]{
var ageSum:Int=0
var countSum:Int=0
override def isZero: Boolean = {
ageSum==0&&countSum==0
}
override def copy(): AccumulatorV2[Int, Double] = {
val accumulator = new MyAccumulator
accumulator.ageSum=this.ageSum
accumulator.countSum=this.countSum
accumulator
}
override def reset(): Unit = {
ageSum=0
countSum=0
}
override def add(v: Int): Unit = {
ageSum+=v
countSum+=1
}
override def merge(other: AccumulatorV2[Int, Double]): Unit = {
other match {
case ma:MyAccumulator =>{
this.ageSum+=ma.ageSum
this.countSum+=ma.countSum
}
case _=>
}
}
override def value: Double = {
ageSum.toDouble/countSum
}
}
- 自定义聚合函数实现-弱类型(应用于SparkSQL更方便)
object SQLDemo {
case class People(name:String,age:Int)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc: SparkContext = spark.sparkContext
//读取json文件
val df: DataFrame = spark.read.json("in/users.json")
//创建临时视图
df.createOrReplaceTempView("user")
//创建自定义函数对象
val myAvg = new MyAvg
//注册自定义函数
spark.udf.register("myavg",myAvg)
//使用聚合函数查询
spark.sql("select myavg(age) from user").show()
}
}
//自定义UDAF函数(若类型)
class MyAvg extends UserDefinedAggregateFunction{
//聚合函数的输入数据类型
override def inputSchema: StructType = {
StructType(Array(StructField(
"age",IntegerType
)))
}
//缓存数据的类型
override def bufferSchema: StructType = {
StructType(Array(
StructField("sum",IntegerType),
StructField("count",IntegerType)
))
}
//聚合函数返回的数据类型
override def dataType: DataType = DoubleType
//稳定性 默认不处理 直接返回true 相同的输入是否会得到相同的输出
override def deterministic: Boolean = true
//初始化 缓存设置到初始状态
override def initialize(buffer: MutableAggregationBuffer): Unit = {
//让缓存中年龄总和归0
buffer(0)=0
//让缓存中总人数归0
buffer(1)=0
}
//更新缓存数据
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!buffer.isNullAt(0)){//buffer.getAs[Int](0)
buffer(0)=buffer.getInt(0)+input.getInt(0)
buffer(1)=buffer.getInt(1)+1}
}
//分区间合并
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0)=buffer1.getInt(0)+buffer2.getInt(0)
buffer1(1)=buffer1.getInt(1)+buffer2.getInt(1)
}
//计算逻辑
override def evaluate(buffer: Row): Any = {
buffer.getInt(0).toDouble/buffer.getInt(1)
}
}
4)自定义聚合函数实现-强类型(应用于DataSet的DSL更方便)
object SQLDemo {
case class People(name:String,age:Int)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
//读取json文件
val df: DataFrame = spark.read.json("in/users.json")
//创建临时视图
// df.createOrReplaceTempView("user")
//创建自定义函数对象
val myAvg = new MyAvg
//注意:如果是自定义UDAF的强类型,没有办法应用SQl风格
//注册自定义函数
//spark.udf.register("myavg",myAvg)
//使用聚合函数查询
//spark.sql("select myavg(age) from user").show()
val ds: Dataset[User] = df.as[User]
//将自定义函数对象转换为查询列
val col: TypedColumn[User, Double] = myAvg.toColumn
//在进行查询的时候,会将查询出来的记录交给自定义函数进行处理
ds.select(col).show()
}
}
//输入类型的样例类
case class User(name:String,age:Long)
//缓存类型
case class AgeBuffer(var sum:Long,var count:Long)
/**
* 定义类继承org.apache.spark.sql.expressions.Aggregator
* 重写类中的方法
*/
//自定义UDAF函数(强类型)
class MyAvg extends Aggregator[User,AgeBuffer,Double]{
//对缓存数据进行初始化
override def zero: AgeBuffer = {
AgeBuffer(0L,0L)
}
//对当前分区内的数据进行聚合
override def reduce(b: AgeBuffer, a: User): AgeBuffer = {
b.sum+=a.age
b.count+=1
b
}
//分区间合并
override def merge(b1: AgeBuffer, b2: AgeBuffer): AgeBuffer = {
b1.sum+=b2.sum
b1.count+=b2.count
b1
}
//返回计算结果
override def finish(reduction: AgeBuffer): Double = {
reduction.sum.toDouble/reduction.count
}
//DataSet编码以及解码器,用于序列化,固定写法
//用户自定义Ref类型 product 系统值类型,根据具体类型进行选择
override def bufferEncoder: Encoder[AgeBuffer] = {
Encoders.product
}
override def outputEncoder: Encoder[Double] = {
Encoders.scalaDouble
}
}
2.7.3 UDTF
输入一行,返回多行(hive);
SparkSQL中没有UDTF,spark中用flatMap即可实现该功能,这里演示调用hive创建UDTF
package SQL
import java.util
import org.apache.hadoop.hive.ql.exec.UDFArgumentException
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory
import org.apache.hadoop.hive.serde2.objectinspector.{ObjectInspector, ObjectInspectorFactory, PrimitiveObjectInspector, StructObjectInspector}
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}
class MyUDTF extends GenericUDTF{
override def initialize(argOIs: Array[ObjectInspector]): StructObjectInspector = {
if (argOIs.length!=1){
throw new UDFArgumentException("有且只能有一个参数传入")
}
if (argOIs(0).getCategory!=ObjectInspector.Category.PRIMITIVE){
throw new UDFArgumentException("参数类型不匹配")
}
val fieldNames=new util.ArrayList[String]
val fieldOIs=new util.ArrayList[ObjectInspector]
fieldNames.add("type")
//这里定义的输出字段的类型
fieldOIs.add(PrimitiveObjectInspectorFactory
.javaStringObjectInspector)
ObjectInspectorFactory.
getStandardStructObjectInspector(fieldNames,fieldOIs)
}
//传入 hadoop scala kafa
//输出 hadoop
// scala
// kafa
override def process(objects: Array[AnyRef]): Unit = {
//将字符串切分成的单个单词
val strings: Array[String] = objects(0).toString.split(" ")
println(strings)
for (str <- strings) {
val tmp = new Array[String](1)
tmp(0)=str
forward(tmp)
}
}
override def close(): Unit = {}
}
object SparkUDTFDemo {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder().appName("function").master("local[3]").enableHiveSupport().getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
val lines: RDD[String] = sc.textFile("in/word.txt")
val stuDF: DataFrame = lines.map(_.split("//"))
.filter(x => x(1).equals("ls"))
.map(x => (x(0), x(1), x(2)))
.toDF("id", "name", "class")
stuDF.createOrReplaceTempView("student")
spark.sql("CREATE TEMPORARY FUNCTION MyUDTF AS 'SQL.MyUDTF'")
spark.sql("select MyUDTF(class) from student").show()
}
}
注意:
需要使用enableHiveSupport()
as后面的方法名称要全路径
第3章 SparkSQL数据的加载与保存
3.1 通用的加载和保存方式
spark
.read.load 是加载数据的通用方法
df
.write.save 是保存数据的通用方法
3.1.1 加载数据
- read直接加载数据
scala> spark.read.
csv jdbc load options parquet table textFile
format json option orc schema text
注意:加载数据的相关参数需写到上述方法中,如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
scala> spark.read.json("/root/users.json").show()
+----+-------+
| Age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
- format指定加载数据类型
scala> spark.read.format("…")[.option("…")].load("…")
用法详解:
- format("…"):指定加载的数据类型,包括"csv"、“jdbc”、“json”、“orc”、“parquet"和"textFile”
- load("…"):在"csv"、“jdbc”、“json”、“orc”、"parquet"和"textFile"格式下需要传入加载数据的路径
- option("…"):在"jdbc"格式下需要传入JDBC相应参数,url、user、password和dbtable
scala> spark.read.format("json").load("/root/users.json").show()
+----+-------+
| Age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
- 在文件上直接运行SQL
我们前面都是使用read API 先把文件加载到 DataFrame然后再查询,其实,我们也可以直接在文件上进行查询
scala> spark.sql("select * from json.`/root/users.json`").show()
+----+-------+
| Age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
注意: json表示文件的格式. 后面的文件具体路径需要用反引号括起来.
3.1.2 保存数据
- write直接保存数据
scala> df.write.
bucketBy format jdbc mode options parquet save sortBy
csv insertInto json option orc partitionBy saveAsTable text
注意:保存数据的相关参数需写到上述方法中。如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
例如:直接将df中数据保存到指定目录
//默认保存格式为parquet
scala> df.write.save("/opt/module/spark-local/output")
//可以指定为保存格式,直接保存,不需要再调用save了
scala> df.write.json("/opt/module/spark-local/output")
- format指定保存数据类型
scala> df.write.format("…")[.option("…")].save("…")
用法详解:
- format("…"):指定保存的数据类型,包括"csv"、“jdbc”、“json”、“orc”、“parquet"和"textFile”。
- save ("…"):在"csv"、“orc”、"parquet"和"textFile"格式下需要传入保存数据的路径。
- option("…"):在"jdbc"格式下需要传入JDBC相应参数,url、user、password和dbtable
- 文件保存选项
保存操作可以使用 SaveMode, 用来指明如何处理数据,使用mode()方法来设置。
有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。
SaveMode是一个枚举类,其中的常量包括:
Scala/Java | Any Language | Meaning |
---|---|---|
SaveMode.ErrorIfExists(default) | "error"(default) | 如果文件已经存在则抛出异常 |
SaveMode.Append | "append" | 如果文件已经存在则追加 |
SaveMode.Overwrite | "overwrite" | 如果文件已经存在则覆盖 |
SaveMode.Ignore | "ignore" | 如果文件已经存在则忽略 |
例如:使用指定format指定保存类型进行保存
df.write.mode("append").json("/opt/module/spark-local/output")
3.1.3 默认数据源
Spark SQL的默认数据源为Parquet格式。数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需要使用format。修改配置项spark.sql.sources.default,可修改默认数据源格式。
- 加载数据
scala> spark.read.load("/root/out").show()
+----+-------+
| Age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
- 保存数据
scala> var df = spark.read.json("/root/users.json")
//保存为parquet格式
scala> df.write.mode("append").save("/root/out")
3.2 JSON文件
Spark SQL 能够自动推测 JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载一个?一个JSON 文件。
注意:这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串。格式如下:
{"name":"Michael"}
{"name":"Andy","age":30}
{"name":"Justin","age":19}
- 导入隐式转换
import spark.implicits._
- 加载JSON文件
val path = "/root/users.json"
val peopleDF = spark.read.json(path)
- 创建临时表
peopleDF.createOrReplaceTempView("people")
- 数据查询
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19").show()
3.3 MySQL
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
如果使用spark-shell操作,可在启动shell时指定相关的数据库驱动路径或者将相关的数据库驱动放到spark的类路径下。
bin/spark-shell
--jars mysql-connector-java-5.1.27-bin.jar
我们这里只演示在Idea中通过JDBC对Mysql进行操作
导入依赖
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
3.3.1 从JDBC读数据
object SQLDemo {
case class People(name:String,age:Int)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
val url="jdbc:mysql://hadoop100:3306/test"
val driver="com.mysql.jdbc.Driver"
val user="root"
val password="ok"
//方式1:通用load方法读取
spark.read.format("jdbc")
.option("url",url)
.option("driver",driver)
.option("user",user)
.option("password",password)
.option("dbtable","student")
.load().show()
//方式2:通用的load方法读取,参数的另一种形式
spark.read.format("jdbc")
.options(Map(
"url"->url,
"driver"->driver,
"user"->user,
"password"->password
))
//方式3:使用jdbc方法读取
val props = new Properties()
props.setProperty("user",user)
props.setProperty("password",password)
spark.read.jdbc(url,"student",props).show()
}
}
3.3.2 向JDBC写数据
object SQLDemo {
//这里的字段名称需要与sql数据名称相同
case class People(sname:String,sage:Int)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
val ds: Dataset[People] = sc.makeRDD(List(People("zs",20),People("ls",25))).toDS
val url="jdbc:mysql://hadoop100:3306/test"
val driver="com.mysql.jdbc.Driver"
val user="root"
val password="ok"
//方式1:通用的方式 format指定写出类型
ds.write.format("jdbc")
.option("url",url)
.option("driver",driver)
.option("user",user)
.option("password",password)
.option("dbtable","student")
.mode(SaveMode.Append)
.save()
//方式2:通过jdbc方法
val props = new Properties()
props.setProperty("user",user)
props.setProperty("password",password)
ds.write.mode(SaveMode.Append).jdbc(url,"student",props)
spark.stop()
}
}
3.4 Hive
Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL编译时可以包含 Hive 支持,也可以不包含。
包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。
若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行,需要注意的是,如果你没有部署好Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,对于使用部署好的Hive,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。
spark-shell默认是Hive支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。
3.4.1 使用内嵌Hive
如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可.
Hive 的元数据存储在 derby 中, 仓库地址:$SPARK_HOME/spark-warehouse
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
+--------+---------+-----------+
scala> spark.sql("create table aa(id int)")
19/02/09 18:36:10 WARN HiveMetaStore: Location: file:/opt/module/spark-local/spark-warehouse/aa specified for non-external table:aa
res2: org.apache.spark.sql.DataFrame = []
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| aa| false|
+--------+---------+-----------+
向表中加载本地数据数据
scala> spark.sql("load data local inpath './ids.txt' into table aa")
res8: org.apache.spark.sql.DataFrame = []
scala> spark.sql("select * from aa").show
+---+
| id|
+---+
|100|
|101|
|102|
|103|
|104|
|105|
|106|
+---+
然而在实际使用中, 几乎没有任何人会使用内置的 Hive
3.4.2 外部Hive应用
如果Spark要接管Hive外部已经部署好的Hive,需要通过以下几个步骤。
- 确定原有Hive是正常工作的
- 需要把hive-site.xml拷贝到spark的conf/目录下
- 如果以前hive-site.xml文件中,配置过Tez相关信息,注释掉
- 把Mysql的驱动copy到Spark的jars/目录下
- 需要提前启动hive服务,hive/bin/hiveservices.sh start
- 如果访问不到hdfs,则需把core-site.xml和hdfs-site.xml拷贝到conf/目录
scala> spark.sql("show tables").show
+--------+------------------+-----------+
|database| tableName|isTemporary|
+--------+------------------+-----------+
| default| emp_id| false|
| default| employee| false|
| default| employee_id| false|
| default| employee_p| false|
| default|employee_partition| false|
| default| p_test| false|
| default| tmp_employee| false|
| default| toronto| false|
| default| userinfos| false|
+--------+------------------+-----------+
scala> spark.sql("select * from employee").show
+-------+-------------------+------------+--------------+--------------------+
| name| address| info| technol| jobs|
+-------+-------------------+------------+--------------+--------------------+
|Michael|[Montreal, Toronto]| [Male, 30]| [DB -> 80]|[Product -> Devel...|
| Will| [Montreal]| [Male, 35]| [Perl -> 85]|[Product -> Lead,...|
|Shelley| [New York]|[Female, 27]|[Python -> 80]|[Test -> Lead, CO...|
| Lucy| [Vancouver]|[Female, 57]| [Sales -> 89]| [Sales -> Lead]|
+-------+-------------------+------------+--------------+--------------------+
3.4.3 运行Spark SQL CLI
Spark SQLCLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务。在Spark目录下执行如下命令启动Spark SQ LCLI,直接执行SQL语句,类似Hive窗口。
3.4.4 代码中操作Hive
- 添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.1.1</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency>
-
拷贝hive-site.xml到resources目录
-
代码实现
object SQLDemo {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("sql").setMaster("local[3]")
val spark: SparkSession = SparkSession
.builder()
.config(conf)
.enableHiveSupport()
.getOrCreate()
spark.sql("show tables").show()
}
}