Spark GraphX 中的 pregel函数

pregel函数源码 与 各个参数介绍

  def pregel[A: ClassTag](
      initialMsg: A,
      maxIterations: Int = Int.MaxValue,
      activeDirection: EdgeDirection = EdgeDirection.Either)(
      vprog: (VertexId, VD, A) => VD,
      sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
      mergeMsg: (A, A) => A)
    : Graph[VD, ED] = {
    Pregel(graph, initialMsg, maxIterations, activeDirection)(vprog, sendMsg, mergeMsg)
  }


参数说明
initialMsg图初始化的时候,开始模型计算的时候,所有节点都会先收到一个消息
maxIterations最大迭代次数
activeDirection规定了发送消息的方向
vprog节点调用该消息将聚合后的数据和本节点进行属性的合并
sendMsg激活态的节点调用该方法发送消息
mergeMsg如果一个节点接收到多条消息,先用mergeMsg 来将多条消息聚合成为一条消息,如果节点只收到一条消息,则不调用该函数

案例: 求顶点5 到 其他各顶点的 最短距离

在理解案例之前,首先要清楚关于 顶点 的两点知识:

  1. 顶点 的状态有两种:
    (1)、钝化态【类似于休眠,不做任何事】
    (2)、激活态【干活】
  2. 顶点 能够处于激活态需要有条件:
    (1)、成功收到消息 或者
    (2)、成功发送了任何一条消息

案例源码如下:

package graphx
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.graphx._
object PregelDemo {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setMaster("local[3]").setAppName("demo")
    val sc = new SparkContext(conf)

    val vertexRDD= sc.makeRDD(Array(
      (1L, ("Alice", 28)),
      (2L, ("Bob", 27)),
      (3L, ("Charlie", 65)),
      (4L, ("David", 42)),
      (5L, ("Ed", 55)),
      (6L, ("Fran", 50))
    ))

    val edgeRDD = sc.makeRDD(Array(
      Edge(2L, 1L, 7),
      Edge(2L, 4L, 2),
      Edge(3L, 2L, 4),
      Edge(3L, 6L, 3),
      Edge(4L, 1L, 1),
      Edge(2L, 5L, 2),
      Edge(5L, 3L, 8),
      Edge(5L, 6L, 3)
    ))

    val graph = Graph(vertexRDD,edgeRDD)

    /* ************************** 使用pregle算法计算 ,顶点5 到 各个顶点的最短距离 ************************** */

    //被计算的图中,起始顶点id
    val srcVertexId=5L
    val initialGraph: Graph[Double, PartitionID] = graph.mapVertices { case (vid, (name, age)) => if (vid == srcVertexId) 0.0 else Double.PositiveInfinity }

    //调用pregel
    val pregelGraph: Graph[Double, PartitionID] = initialGraph.pregel(
      Double.PositiveInfinity,
      Int.MaxValue,
      EdgeDirection.Out
    )(
      (vid: VertexId, vd: Double, distMsg: Double) => {
        val minDist = math.min(vd, distMsg)
        println(s"顶点${vid},属性${vd},收到信息${distMsg},合并后的属性${minDist}")
        minDist
      },
      (edgeTriplet: EdgeTriplet[Double, PartitionID]) => {
        if (edgeTriplet.srcAttr + edgeTriplet.attr < edgeTriplet.dstAttr) {
          println(s"顶点${edgeTriplet.srcId} 给 顶点${edgeTriplet.dstId} 发送信息 ${edgeTriplet.srcAttr + edgeTriplet.attr}")
          Iterator[(VertexId, Double)]((edgeTriplet.dstId, edgeTriplet.srcAttr + edgeTriplet.attr))
        } else {
          Iterator.empty
        }
      },
      (msg1: Double, msg2: Double) => math.min(msg1, msg2)
    )
    pregelGraph.vertices.collect.foreach(println)
  }
}

//------------------------------------------ 各个顶点接受初始消息initialMsg ------------------------------------------
顶点4,属性Infinity,收到信息Infinity,合并后的属性Infinity
顶点5,属性0.0,收到信息Infinity,合并后的属性0.0
顶点6,属性Infinity,收到信息Infinity,合并后的属性Infinity
顶点2,属性Infinity,收到信息Infinity,合并后的属性Infinity
顶点1,属性Infinity,收到信息Infinity,合并后的属性Infinity
顶点3,属性Infinity,收到信息Infinity,合并后的属性Infinity
//------------------------------------------ 第一次迭代 ------------------------------------------
顶点5 给 顶点3 发送信息 8.0
顶点5 给 顶点6 发送信息 3.0
顶点6,属性Infinity,收到信息3.0,合并后的属性3.0
顶点3,属性Infinity,收到信息8.0,合并后的属性8.0
//------------------------------------------ 第二次迭代 ------------------------------------------
顶点3 给 顶点2 发送信息 12.0
顶点2,属性Infinity,收到信息12.0,合并后的属性12.0
//------------------------------------------ 第三次迭代 ------------------------------------------
顶点2 给 顶点1 发送信息 19.0
顶点2 给 顶点4 发送信息 14.0
顶点4,属性Infinity,收到信息14.0,合并后的属性14.0
顶点1,属性Infinity,收到信息19.0,合并后的属性19.0
//------------------------------------------ 第四次迭代 ------------------------------------------
顶点4 给 顶点1 发送信息 15.0
顶点1,属性19.0,收到信息15.0,合并后的属性15.0
(6,3.0)
(3,8.0)
(4,14.0)
(1,15.0)
(5,0.0)
(2,12.0)

pregel原理分析

调用pregel方法之前,先把图的各个顶点的属性初始化为如下图所示:顶点5到自己的距离为0,所以设为0,其他顶点都设为 正无穷大Double.PositiveInfinity。见代码44行

当调用pregel方法开始:
首先,所有顶点都将接收到一条初始消息initialMsg ,使所有顶点都处于激活态(红色标识的节点)。

图1

第一次迭代开始:

所有顶点以EdgeDirection.Out的边方向调用sendMsg方法发送消息给目标顶点,如果 源顶点的属性+边的属性<目标顶点的属性,则发送消息。否则不发送。
发送成功的只有两条边:

5—>3(0+8<Double.Infinity , 成功),
5—>6(0+3<Double.Infinity , 成功)
3—>2(Double.Infinity+4>Double.Infinity , 失败)
3—>6(Double.Infinity+3>Double.Infinity , 失败)
2—>1(Double.Infinity+7>Double.Infinity , 失败)
2—>4(Double.Infinity+2>Double.Infinity , 失败)
2—>5(Double.Infinity+2>Double.Infinity , 失败)
4—>1(Double.Infinity+1>Double.Infinity , 失败)

sendMsg方法执行完成之后,根据顶点处于激活态的条件,顶点5 成功地分别给顶点3 和 顶点6 发送了消息,顶点3 和 顶点6 也成功地接受到了消息。所以 此时只有5,3,6 三个顶点处于激活态,其他顶点全部钝化。然后收到消息的顶点3和顶点6都调用vprog方法,将收到的消息 与 自身的属性合并。如下图2所示。到此第一次迭代结束。
在这里插入图片描述

第二次迭代开始:

顶点3 给 顶点6 发送消息失败,顶点3 给 顶点2 发送消息成功,此时 顶点3 成功发送消息,顶点2 成功接收消息,所以顶点2 和 顶点3 都成为激活状态,其他顶点都成为钝化状态。然后顶点2 调用vprog方法,将收到的消息 与 自身的属性合并。 见图3. 至此第二次迭代结束。
在这里插入图片描述

第三次迭代开始:

顶点3分别发送消息给顶点2失败 和 顶点6失败,顶点2 分别发消息给 顶点1成功、顶点4成功、顶点5失败 ,所以 顶点2、顶点1、顶点4 成为激活状态,其他顶点为钝化状态。顶点1 和 顶点4分别调用vprog方法,将收到的消息 与 自身的属性合并。见图4。至此第三次迭代结束
在这里插入图片描述

第四次迭代开始:

顶点2 分别发送消息给 顶点1失败 和 顶点4失败。顶点4 给 顶点1发送消息成功,顶点1 和 顶点4 进入激活状态,其他顶点进入钝化状态。顶点1 调用vprog方法,将收到的消息 与 自身的属性合并 。见图5
在这里插入图片描述

第五次迭代开始:

顶点4 再给 顶点1发送消息失败,顶点4 和 顶点1 进入钝化状态,此时全图都进入钝化状态。至此结束,见图6.
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值