基于深度强化学习的智能楼宇节能热舒适控制框架的设计与优化,基于深度强化学习的智能楼宇节能热舒适控制方案的实验评估

基于深度强化学习的智能楼宇节能热舒适控制
摘要:采暖、通风和空调 (HVAC) 能耗极高,占建筑总能耗的 40%。
因此,设计一些节能的建筑热控制策略,在保持居住者舒适度的同时降低暖通空调的能耗是至关重要的。
然而,实施这样的政策具有挑战性,因为它涉及建筑环境中的各种影响因素,这些因素通常难以建模,并且可能因情况而异。
为了应对这一挑战,我们提出了一个基于深度强化学习的智能建筑能源优化和热舒适控制框架。
我们将建筑热控制制定为成本最小化问题,该问题同时考虑了 HVAC 的能耗和居住者的热舒适度。
为了解决这个问题,我们首先采用基于深度神经网络的方法来预测乘员的热舒适度,然后采用深度确定性策略梯度(DDPG)来学习热控制策略。
为了评估性能,我们实施了一个建筑热控制模拟系统并评估了各种设置下的性能。
实验结果表明,我们的方法可以提高热舒适度预测精度,在提高乘员热舒适度的同时降低暖通空调的能耗。

ID:48100690276603453

满船清梦乔碧萝


基于深度强化学习的智能楼宇节能热舒适控制

摘要:
采暖、通风和空调 (HVAC) 能耗极高,占建筑总能耗的 40%。为了降低能耗,并提供舒适的室内环境,节能的建筑热控制策略变得至关重要。然而,由于建筑环境中的复杂因素,如气候条件、建筑结构和人员活动,热控制策略的实施具有一定的挑战性。为了应对这一挑战,本文提出了一个基于深度强化学习的智能建筑能源优化和热舒适控制框架。本文将建筑热控制制定为成本最小化问题,通过考虑HVAC的能耗和居住者的热舒适度来进行优化决策。具体而言,本文采用了基于深度神经网络的方法来预测居住者的热舒适度,并使用深度确定性策略梯度(DDPG)算法来学习热控制策略。通过建筑热控制模拟系统的实施与性能评估,实验结果表明,本文提出的方法能够提高热舒适度预测精度,同时降低HVAC的能耗。

  1. 引言
    建筑能耗对于整体能源消耗和环境污染具有重要影响,节能的建筑热控制策略是实现可持续发展的关键。目前,传统的热控制方法往往依赖于人工经验和规则,无法很好地适应复杂多变的建筑环境。基于深度强化学习的智能热舒适控制方法能够通过学习和优化来改进热控制策略,从而提高能源利用率和舒适度。

  2. 相关工作
    本节介绍了一些相关的研究工作,包括建筑能源优化、热舒适控制和基于深度强化学习的方法。其中,建筑能源优化方法主要包括基于模型和基于数据驱动的方法。热舒适控制方法主要包括基于规则和基于模型预测控制的方法。基于深度强化学习的方法是近年来在建筑能源管理领域的热点研究,通过学习热控制策略和优化控制决策,能够提高热舒适度和能源利用率。

  3. 智能楼宇节能热舒适控制框架
    本节详细介绍了基于深度强化学习的智能楼宇节能热舒适控制框架。该框架主要分为两个部分:热舒适度预测和热控制策略学习。首先,通过采集实时的环境数据和居住者行为数据,利用深度神经网络来预测居住者的热舒适度。其次,利用深度确定性策略梯度(DDPG)算法来学习热控制策略,最小化能耗成本的同时保证居住者的热舒适度。通过反复迭代和优化,最终得到一组优化控制决策。

  4. 实验与评估
    为了验证基于深度强化学习的智能热舒适控制方法的有效性,本文设计了一个建筑热控制模拟系统,并进行了一系列的实验与评估。实验中,我们设置了不同的初始环境条件和居住者行为,并比较了本文方法与传统方法的性能差异。实验结果表明,本文方法能够更准确地预测热舒适度,并在降低能耗的同时提供满足舒适度需求的热控制策略。

  5. 结论
    本文基于深度强化学习的智能楼宇节能热舒适控制方法针对建筑热控制问题进行了研究。通过实验与评估,验证了该方法的有效性和优越性。未来,我们将进一步探索更复杂的建筑环境和更高效的热控制策略,以提高能源利用效率和舒适度。

参考文献:
[1] Pan, Y., Chen, Y., Xu, X., et al. (2018). Deep reinforcement learning for building energy optimization and control: A review. Applied Energy, 225, 454-469.
[2] Das, S., Jain, A., & Paliwal, M. (2019). Smart building energy optimization: A review. Renewable and Sustainable Energy Reviews, 103, 311-324.
[3] Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
[4] Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al. (2016). Continuous control with deep reinforcement learning. International Conference on Learning Representations (ICLR).

作者简介:
XXX,XXXX大学计算机科学与技术专业在读博士生。研究方向主要包括智能建筑和深度强化学习。已发表多篇论文,研究成果在相关领域具有一定的影响力。联系方式:xxxxx@xxx.edu.cn。

声明:本文为作者原创,未经许可不得转载。

相关的代码,程序地址如下:http://fansik.cn/690276603453.html

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值